These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 3375436)

  • 41. Coherent inelastic scattering in Si and TiAl.
    Moodie AF; Colson TA; Whitfield HJ
    Ultramicroscopy; 2004 Nov; 101(2-4):247-55. PubMed ID: 15450670
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects.
    Emfietzoglou D; Kyriakou I; Garcia-Molina R; Abril I; Nikjoo H
    Radiat Res; 2013 Nov; 180(5):499-513. PubMed ID: 24131062
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electron-stimulated reactions and O2 production in methanol-covered amorphous solid water films.
    Akin MC; Petrik NG; Kimmel GA
    J Chem Phys; 2009 Mar; 130(10):104710. PubMed ID: 19292552
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Attenuation of slow (10-40 eV) electrons in soft nanoparticles: Size matters in argon clusters.
    Winkler M; Børve KJ
    Phys Rev E; 2018 Jan; 97(1-1):012604. PubMed ID: 29448394
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A multichannel electron energy loss spectrometer for low-temperature condensed films.
    David DE; Popović DB; Antic D; Michl J
    J Chem Phys; 2004 Dec; 121(21):10542-50. PubMed ID: 15549937
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-energy electron-stimulated luminescence of thin H2O and D2O layers on Pt(111).
    Petrik NG; Kimmel GA
    J Phys Chem B; 2005 Aug; 109(33):15835-41. PubMed ID: 16853012
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dissociative scattering of hyperthermal energy CF3+ ions from modified surfaces.
    Rezayat T; Shukla A
    J Chem Phys; 2007 Feb; 126(8):084701. PubMed ID: 17343463
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An investigation into electron scattering from pyrazine at intermediate and high energies.
    Sanz AG; Fuss MC; Blanco F; Gorfinkiel JD; Almeida D; da Silva FF; Limão-Vieira P; Brunger MJ; García G
    J Chem Phys; 2013 Nov; 139(18):184310. PubMed ID: 24320277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Monte Carlo calculations of electrons in aluminum.
    Aydin A
    Appl Radiat Isot; 2009 Feb; 67(2):281-6. PubMed ID: 18541434
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reactivity induced at 25 K by low-energy electron irradiation of condensed NH3-CH3COOD (1 : 1) mixture.
    Lafosse A; Bertin M; Domaracka A; Pliszka D; Illenberger E; Azria R
    Phys Chem Chem Phys; 2006 Dec; 8(47):5564-8. PubMed ID: 17136271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrafast electron-induced desorption of water from nanometer amorphous solid water films.
    Backus EH; Grecea ML; Kleyn AW; Bonn M
    J Phys Chem B; 2007 Jun; 111(22):6141-5. PubMed ID: 17503805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methods for the Simulation of the Slowing of Low-Energy Electrons in Water.
    Smith ME; Green NJB; Pimblott SM
    J Comput Chem; 2018 Oct; 39(26):2217-2225. PubMed ID: 30238486
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations.
    Emfietzoglou D; Kostarelos K; Hadjidoukas P; Bousis C; Fotopoulos A; Pathak A; Nikjoo H
    Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Observation of the anisotropy of the inelastic scattering of fast electrons accompanied by the K-shell ionization of a carbon nanotube.
    Saitoh K; Nagasaka K; Tanaka N
    J Electron Microsc (Tokyo); 2006 Dec; 55(6):281-8. PubMed ID: 17303621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hot electron attenuation of direct and scattered carriers across an epitaxial Schottky interface.
    Parui S; Klandermans PS; Venkatesan S; Scheu C; Banerjee T
    J Phys Condens Matter; 2013 Nov; 25(44):445005. PubMed ID: 24067606
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-energy electron penetration range in liquid water.
    Meesungnoen J; Jay-Gerin JP; Filali-Mouhim A; Mankhetkorn S
    Radiat Res; 2002 Nov; 158(5):657-60. PubMed ID: 12385644
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electron stopping power and inelastic mean free path in amino acids and protein over the energy range of 20-20,000 eV.
    Tan Z; Xia Y; Zhao M; Liu X
    Radiat Environ Biophys; 2006 Jul; 45(2):135-43. PubMed ID: 16733724
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction of electrons with light metal hydrides in the transmission electron microscope.
    Wang Y; Wakasugi T; Isobe S; Hashimoto N; Ohnuki S
    Microscopy (Oxf); 2014 Dec; 63(6):437-47. PubMed ID: 25288591
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Theoretical and experimental study of nanopore drilling by a focused electron beam in transmission electron microscopy.
    Kim HM; Lee MH; Kim KB
    Nanotechnology; 2011 Jul; 22(27):275303. PubMed ID: 21597159
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the mean energy deposit during the impact of charged particles on liquid water.
    Bernal MA
    Phys Med Biol; 2012 Apr; 57(7):1745-57. PubMed ID: 22407219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.