BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33754368)

  • 1. From convolutional neural networks to models of higher-level cognition (and back again).
    Battleday RM; Peterson JC; Griffiths TL
    Ann N Y Acad Sci; 2021 Dec; 1505(1):55-78. PubMed ID: 33754368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limits to visual representational correspondence between convolutional neural networks and the human brain.
    Xu Y; Vaziri-Pashkam M
    Nat Commun; 2021 Apr; 12(1):2065. PubMed ID: 33824315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
    Xu Y; Vaziri-Pashkam M
    J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting Low-Dimensional Psychological Representations from Convolutional Neural Networks.
    Jha A; Peterson JC; Griffiths TL
    Cogn Sci; 2023 Jan; 47(1):e13226. PubMed ID: 36617318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training for object recognition with increasing spatial frequency: A comparison of deep learning with human vision.
    Avberšek LK; Zeman A; Op de Beeck H
    J Vis; 2021 Sep; 21(10):14. PubMed ID: 34533580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining convolutional neural networks and cognitive models to predict novel object recognition in humans.
    Annis J; Gauthier I; Palmeri TJ
    J Exp Psychol Learn Mem Cogn; 2021 May; 47(5):785-807. PubMed ID: 33151718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do Humans and Deep Convolutional Neural Networks Use Visual Information Similarly for the Categorization of Natural Scenes?
    De Cesarei A; Cavicchi S; Cristadoro G; Lippi M
    Cogn Sci; 2021 Jun; 45(6):e13009. PubMed ID: 34170027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization Methods for Image Transformation Convolutional Neural Networks.
    Protas E; Bratti JD; Gaya JFO; Drews P; Botelho SSC
    IEEE Trans Neural Netw Learn Syst; 2019 Jul; 30(7):2231-2243. PubMed ID: 30561353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hiding a plane with a pixel: examining shape-bias in CNNs and the benefit of building in biological constraints.
    Malhotra G; Evans BD; Bowers JS
    Vision Res; 2020 Sep; 174():57-68. PubMed ID: 32599343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the feedforward sweep: feedback computations in the visual cortex.
    Kreiman G; Serre T
    Ann N Y Acad Sci; 2020 Mar; 1464(1):222-241. PubMed ID: 32112444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Texture and art with deep neural networks.
    Gatys LA; Ecker AS; Bethge M
    Curr Opin Neurobiol; 2017 Oct; 46():178-186. PubMed ID: 28926765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future.
    Lindsay GW
    J Cogn Neurosci; 2021 Sep; 33(10):2017-2031. PubMed ID: 32027584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of capacity constraints in Convolutional Neural Networks for learning random versus natural data.
    Tsvetkov C; Malhotra G; Evans BD; Bowers JS
    Neural Netw; 2023 Apr; 161():515-524. PubMed ID: 36805266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification.
    Sun Y; Xue B; Zhang M; Yen GG; Lv J
    IEEE Trans Cybern; 2020 Sep; 50(9):3840-3854. PubMed ID: 32324588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound.
    Gómez-Flores W; Coelho de Albuquerque Pereira W
    Comput Biol Med; 2020 Nov; 126():104036. PubMed ID: 33059238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knowledge distillation circumvents nonlinearity for optical convolutional neural networks.
    Xiang J; Colburn S; Majumdar A; Shlizerman E
    Appl Opt; 2022 Mar; 61(9):2173-2183. PubMed ID: 35333231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel feature-scrambling approach reveals the capacity of convolutional neural networks to learn spatial relations.
    Farahat A; Effenberger F; Vinck M
    Neural Netw; 2023 Oct; 167():400-414. PubMed ID: 37673027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.