BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33754540)

  • 21. Two-Photon Autofluorescence Imaging of Fixed Tissues: Feasibility and Potential Values for Biomedical Applications.
    Li LZ; Masek M; Wang T; Xu HN; Nioka S; Baur JA; Ragan TM
    Adv Exp Med Biol; 2020; 1232():375-381. PubMed ID: 31893434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopic Study of Time-Varying Optical Redox Ratio in NADH/FAD Solution.
    Lim SY; Jang JI; Yoon H; Kim HM
    J Phys Chem B; 2022 Dec; 126(47):9840-9849. PubMed ID: 36399328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia.
    Skala MC; Riching KM; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; White JG; Ramanujam N
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19494-9. PubMed ID: 18042710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism.
    Penjweini R; Roarke B; Alspaugh G; Gevorgyan A; Andreoni A; Pasut A; Sackett DL; Knutson JR
    Redox Biol; 2020 Jul; 34():101549. PubMed ID: 32403080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Label-free redox imaging of patient-derived organoids using selective plane illumination microscopy.
    Favreau PF; He J; Gil DA; Deming DA; Huisken J; Skala MC
    Biomed Opt Express; 2020 May; 11(5):2591-2606. PubMed ID: 32499946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying Age-Related Changes in Skin Wound Metabolism Using
    Jones JD; Ramser HE; Woessner AE; Veves A; Quinn KP
    Adv Wound Care (New Rochelle); 2020 Mar; 9(3):90-102. PubMed ID: 31993251
    [No Abstract]   [Full Text] [Related]  

  • 27. Visualization of Breast Cancer Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox State.
    Hou J; Williams J; Botvinick EL; Potma EO; Tromberg BJ
    Cancer Res; 2018 May; 78(10):2503-2512. PubMed ID: 29535219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential Expression of PGC1α in Intratumor Redox Subpopulations of Breast Cancer.
    Lin Z; Xu HN; Wang Y; Floros J; Li LZ
    Adv Exp Med Biol; 2018; 1072():177-181. PubMed ID: 30178342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast.
    Liu Z; Pouli D; Alonzo CA; Varone A; Karaliota S; Quinn KP; Münger K; Karalis KP; Georgakoudi I
    Sci Adv; 2018 Mar; 4(3):eaap9302. PubMed ID: 29536043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput measurements of the optical redox ratio using a commercial microplate reader.
    Cannon TM; Shah AT; Walsh AJ; Skala MC
    J Biomed Opt; 2015 Jan; 20(1):010503. PubMed ID: 25634108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Label-free metabolic imaging for sensitive and robust monitoring of anti-CD47 immunotherapy response in triple-negative breast cancer.
    Yang M; Mahanty A; Jin C; Wong ANN; Yoo JS
    J Immunother Cancer; 2022 Sep; 10(9):. PubMed ID: 36096527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of mitochondrial NADH and FAD autofluorescence in live cells.
    Bartolomé F; Abramov AY
    Methods Mol Biol; 2015; 1264():263-70. PubMed ID: 25631020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA-induced metabolic stress in reconstructed human skin.
    Ung TPL; Lim S; Solinas X; Mahou P; Chessel A; Marionnet C; Bornschlögl T; Beaurepaire E; Bernerd F; Pena AM; Stringari C
    Sci Rep; 2021 Nov; 11(1):22171. PubMed ID: 34772978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of Mitochondrial Metabolic Response to Doxorubicin in Prostate Cancer Cells: An NADH, FAD and Tryptophan FLIM Assay.
    Alam SR; Wallrabe H; Svindrych Z; Chaudhary AK; Christopher KG; Chandra D; Periasamy A
    Sci Rep; 2017 Sep; 7(1):10451. PubMed ID: 28874842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quenched coumarin derivatives as fluorescence lifetime phantoms for NADH and FAD.
    Freymüller C; Kalinina S; Rück A; Sroka R; Rühm A
    J Biophotonics; 2021 Jul; 14(7):e202100024. PubMed ID: 33749988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the Redox Status of Mitochondria Through the NADH/FAD
    Chi H; Bhosale G; Duchen MR
    Methods Mol Biol; 2022; 2497():313-318. PubMed ID: 35771452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated biochemical, morphological, and organizational assessment of precancerous changes from endogenous two-photon fluorescence images.
    Levitt JM; McLaughlin-Drubin ME; Münger K; Georgakoudi I
    PLoS One; 2011; 6(9):e24765. PubMed ID: 21931846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autofluorescence spectroscopy in redox monitoring across cell confluencies.
    Yong D; Abdul Rahim AA; Thwin CS; Chen S; Zhai W; Win Naing M
    PLoS One; 2019; 14(12):e0226757. PubMed ID: 31851724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical Redox Imaging Differentiates Triple-Negative Breast Cancer Subtypes.
    Jiang J; Feng M; Jacob A; Li LZ; Xu HN
    Adv Exp Med Biol; 2021; 1269():253-258. PubMed ID: 33966226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential Biomarker for Triple-Negative Breast Cancer Invasiveness by Optical Redox Imaging.
    Feng M; Xu HN; Jiang J; Li LZ
    Adv Exp Med Biol; 2021; 1269():247-251. PubMed ID: 33966225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.