These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33754736)

  • 21. Water-Dispersible Candle Soot-Derived Carbon Nano-Onion Clusters for Imaging-Guided Photothermal Cancer Therapy.
    Sun W; Zhang X; Jia HR; Zhu YX; Guo Y; Gao G; Li YH; Wu FG
    Small; 2019 Mar; 15(11):e1804575. PubMed ID: 30761748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Introducing novel amorphous carbon nanoparticles as energy acceptors into a chemiluminescence resonance energy transfer immunoassay system.
    Wang Z; Gao H; Fu Z
    Analyst; 2013 Nov; 138(22):6753-8. PubMed ID: 23979821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing.
    Aldhaleai A; Tsai PA
    Langmuir; 2021 Jan; 37(1):348-356. PubMed ID: 33377783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances.
    Wu B; Cui X; Jiang H; Wu N; Peng C; Hu Z; Liang X; Yan Y; Huang J; Li D
    J Colloid Interface Sci; 2021 May; 590():301-310. PubMed ID: 33548613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable surface adsorption and wettability of candle soot coated on ferroelectric ceramics.
    Singh G; Sharma M; Vaish R
    J Adv Res; 2019 Mar; 16():35-42. PubMed ID: 30899587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spraying Fabrication of Durable and Transparent Coatings for Anti-Icing Application: Dynamic Water Repellency, Icing Delay, and Ice Adhesion.
    Shen Y; Wu Y; Tao J; Zhu C; Chen H; Wu Z; Xie Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3590-3598. PubMed ID: 30589262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Intracellular Delivery and Cell Harvest Using a Candle Soot-Based Photothermal Platform with Dual-Stimulus Responsiveness.
    Lu K; Lin Y; Zhang H; Cheng J; Qu Y; Wu Y; Zhang Y; Zou Y; Zhang Y; Yu Q; Chen H
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40153-40162. PubMed ID: 37587876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How to Efficiently Prepare Transparent Lubricant-Infused Surfaces: Inspired by Candle Soot.
    Li Z; Guo Z
    Langmuir; 2021 Apr; 37(16):4869-4878. PubMed ID: 33861602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solvent-Free Fabrication of Robust Superhydrophobic Powder Coatings.
    Huang J; Yang M; Zhang H; Zhu J
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1323-1332. PubMed ID: 33382573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioinspired Surfaces with Superwettability for Anti-Icing and Ice-Phobic Application: Concept, Mechanism, and Design.
    Zhang S; Huang J; Cheng Y; Yang H; Chen Z; Lai Y
    Small; 2017 Dec; 13(48):. PubMed ID: 29058767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, characterization, and electrochemical applications of carbon nanoparticles derived from castor oil soot.
    Prasad KS; Chuang MC; Ho JA
    Talanta; 2012 Jan; 88():445-9. PubMed ID: 22265524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process.
    Xu Y; Zhang G; Li L; Xu C; Lv X; Zhang H; Yao W
    J Colloid Interface Sci; 2019 Sep; 552():613-621. PubMed ID: 31170614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropic Superhydrophobic Properties Replicated from Leek Leaves.
    Mirmohammadi SM; Shirazi HD; Heikkilä M; Franssila S; Vapaavuori J; Jokinen V
    Small; 2024 Nov; 20(46):e2403863. PubMed ID: 39073295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superhydrophobic candle soot/PDMS substrate for one-step enrichment and desalting of peptides in MALDI MS analysis.
    Wang X; Li N; Xu D; Yang X; Zhu Q; Xiao D; Lu N
    Talanta; 2018 Dec; 190():23-29. PubMed ID: 30172504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function.
    Wang H; He M; Liu H; Guan Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25586-25594. PubMed ID: 31267735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prolonged exposure to carbon nanoparticles induced methylome remodeling and gene expression in zebrafish heart.
    Zhou W; Tian D; He J; Yan X; Zhao J; Yuan X; Peng S
    J Appl Toxicol; 2019 Feb; 39(2):322-332. PubMed ID: 30289172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.