These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 33754770)
1. Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor. Mangiarotti S; Letellier C Chaos; 2021 Jan; 31(1):013129. PubMed ID: 33754770 [TBL] [Abstract][Full Text] [Related]
2. Peeling bifurcations of toroidal chaotic attractors. Letellier C; Gilmore R; Jones T Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066204. PubMed ID: 18233901 [TBL] [Abstract][Full Text] [Related]
3. Templex: A bridge between homologies and templates for chaotic attractors. Charó GD; Letellier C; Sciamarella D Chaos; 2022 Aug; 32(8):083108. PubMed ID: 36049919 [TBL] [Abstract][Full Text] [Related]
4. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Song ZG; Xu J; Zhen B Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569 [TBL] [Abstract][Full Text] [Related]
6. Curry-Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems. Mugnaine M; Batista AM; Caldas IL; Szezech JD; de Carvalho RE; Viana RL Chaos; 2021 Feb; 31(2):023125. PubMed ID: 33653060 [TBL] [Abstract][Full Text] [Related]
7. Topological aspects of the structure of chaotic attractors in R3. Tsankov TD; Gilmore R Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056206. PubMed ID: 15244903 [TBL] [Abstract][Full Text] [Related]
8. From quasiperiodicity to toroidal chaos: analogy between the Curry-Yorke map and the van der Pol system. Letellier C; Messager V; Gilmore R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046203. PubMed ID: 18517706 [TBL] [Abstract][Full Text] [Related]
9. Embeddings of low-dimensional strange attractors: topological invariants and degrees of freedom. Romanazzi N; Lefranc M; Gilmore R Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066214. PubMed ID: 17677347 [TBL] [Abstract][Full Text] [Related]
11. Homoclinic tangency and chaotic attractor disappearance in a dripping faucet experiment. Pinto RD; Sartorelli JC Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):342-7. PubMed ID: 11046271 [TBL] [Abstract][Full Text] [Related]
12. Fractal snapshot components in chaos induced by strong noise. Bódai T; Károlyi G; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046201. PubMed ID: 21599264 [TBL] [Abstract][Full Text] [Related]
13. Required criteria for recognizing new types of chaos: application to the "cord" attractor. Letellier C; Aguirre LA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036204. PubMed ID: 22587158 [TBL] [Abstract][Full Text] [Related]
14. Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation. Rempel EL; Chian AC Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016203. PubMed ID: 15697694 [TBL] [Abstract][Full Text] [Related]
15. New periodic-chaotic attractors in slow-fast Duffing system with periodic parametric excitation. Li X; Shen Y; Sun JQ; Yang S Sci Rep; 2019 Aug; 9(1):11185. PubMed ID: 31371736 [TBL] [Abstract][Full Text] [Related]
16. Stalactite basin structure of dynamical systems with transient chaos in an invariant manifold. Dronov V; Ott E Chaos; 2000 Jun; 10(2):291-298. PubMed ID: 12779384 [TBL] [Abstract][Full Text] [Related]
17. Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems. Yanchuk S; Kapitaniak T Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056235. PubMed ID: 11736082 [TBL] [Abstract][Full Text] [Related]
18. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation. Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089 [TBL] [Abstract][Full Text] [Related]
19. Low-dimensional paradigms for high-dimensional hetero-chaos. Saiki Y; Sanjuán MAF; Yorke JA Chaos; 2018 Oct; 28(10):103110. PubMed ID: 30384627 [TBL] [Abstract][Full Text] [Related]
20. Optimal periodic orbits of continuous time chaotic systems. Yang TH; Hunt BR; Ott E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1950-9. PubMed ID: 11088659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]