These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 33754787)

  • 1. Comment on "The Winfree model with non-infinitesimal phase-response curve: Ott-Antonsen theory" [Chaos 30, 073139 (2020)].
    Pazó D; Gallego R
    Chaos; 2021 Jan; 31(1):018101. PubMed ID: 33754787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Winfree model with non-infinitesimal phase-response curve: Ott-Antonsen theory.
    Pazó D; Gallego R
    Chaos; 2020 Jul; 30(7):073139. PubMed ID: 32752623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization scenarios in the Winfree model of coupled oscillators.
    Gallego R; Montbrió E; Pazó D
    Phys Rev E; 2017 Oct; 96(4-1):042208. PubMed ID: 29347589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Structured Networks of Winfree Oscillators.
    Laing CR; Bläsche C; Means S
    Front Syst Neurosci; 2021; 15():631377. PubMed ID: 33643004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comment on "Long time evolution of phase oscillator systems" [Chaos 19, 023117 (2009)].
    Ott E; Hunt BR; Antonsen TM
    Chaos; 2011 Jun; 21(2):025112. PubMed ID: 21721790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ott-Antonsen attractiveness for parameter-dependent oscillatory systems.
    Pietras B; Daffertshofer A
    Chaos; 2016 Oct; 26(10):103101. PubMed ID: 27802676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of phase-dependent influence function in the Winfree model of coupled oscillators.
    Manoranjani M; Gopal R; Senthilkumar DV; Chandrasekar VK
    Phys Rev E; 2021 Dec; 104(6-1):064206. PubMed ID: 35030866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of Noisy Oscillator Populations beyond the Ott-Antonsen Ansatz.
    Tyulkina IV; Goldobin DS; Klimenko LS; Pikovsky A
    Phys Rev Lett; 2018 Jun; 120(26):264101. PubMed ID: 30004770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective phase response curves for heterogeneous coupled oscillators.
    Hannay KM; Booth V; Forger DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022923. PubMed ID: 26382491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Average activity of excitatory and inhibitory neural populations.
    Roulet J; Mindlin GB
    Chaos; 2016 Sep; 26(9):093104. PubMed ID: 27781447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators.
    Ichiki A; Okumura K
    Phys Rev E; 2020 Feb; 101(2-1):022211. PubMed ID: 32168625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian phase shifting: Relationships between photic and nonphotic phase-response curves.
    Rosenwasser AM; Dwyer SM
    Physiol Behav; 2001 May; 73(1-2):175-83. PubMed ID: 11399309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale dynamics in communities of phase oscillators.
    Anderson D; Tenzer A; Barlev G; Girvan M; Antonsen TM; Ott E
    Chaos; 2012 Mar; 22(1):013102. PubMed ID: 22462978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collective dynamics of identical phase oscillators with high-order coupling.
    Xu C; Xiang H; Gao J; Zheng Z
    Sci Rep; 2016 Aug; 6():31133. PubMed ID: 27491401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase diagram of a generalized Winfree model.
    Giannuzzi F; Marinazzo D; Nardulli G; Pellicoro M; Stramaglia S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051104. PubMed ID: 17677019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaos in Kuramoto oscillator networks.
    Bick C; Panaggio MJ; Martens EA
    Chaos; 2018 Jul; 28(7):071102. PubMed ID: 30070510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative-tension instability of scroll waves and winfree turbulence in the oregonator model.
    Alonso S; Sagués F; Mikhailov AS
    J Phys Chem A; 2006 Nov; 110(43):12063-71. PubMed ID: 17064196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability.
    Zou W; Wang J
    Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency assortativity can induce chaos in oscillator networks.
    Skardal PS; Restrepo JG; Ott E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):060902. PubMed ID: 26172652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singular unlocking transition in the Winfree model of coupled oscillators.
    Quinn DD; Rand RH; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036218. PubMed ID: 17500780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.