These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33754910)

  • 1. Modeling cortical bone adaptation using strain gradients.
    Tiwari AK; Goyal A; Prasad J
    Proc Inst Mech Eng H; 2021 Jun; 235(6):636-654. PubMed ID: 33754910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico modeling of bone adaptation to rest-inserted loading: Strain energy density versus fluid flow as stimulus.
    Tiwari AK; Kumar R; Tripathi D; Badhyal S
    J Theor Biol; 2018 Jun; 446():110-127. PubMed ID: 29534894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer modelling of bone's adaptation: the role of normal strain, shear strain and fluid flow.
    Tiwari AK; Prasad J
    Biomech Model Mechanobiol; 2017 Apr; 16(2):395-410. PubMed ID: 27585446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computation of physiological loading induced interstitial fluid motion in muscle standardized femur: Healthy vs. osteoporotic bone.
    Shrivas NV; Badhyal S; Tiwari AK; Mishra A; Tripathi D; Patil S
    Comput Methods Programs Biomed; 2023 Jul; 237():107592. PubMed ID: 37209515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canalicular fluid flow induced by loading waveforms: A comparative analysis.
    Kumar R; Tiwari AK; Tripathi D; Shrivas NV; Nizam F
    J Theor Biol; 2019 Jun; 471():59-73. PubMed ID: 30930062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of shear strain gradients as an osteogenic stimulus.
    Daegling DJ; Bhramdat HD; Toro-Ibacache V
    J Theor Biol; 2021 Sep; 524():110730. PubMed ID: 33894230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain gradients correlate with sites of periosteal bone formation.
    Gross TS; Edwards JL; McLeod KJ; Rubin CT
    J Bone Miner Res; 1997 Jun; 12(6):982-8. PubMed ID: 9169359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping Regional Cortical Bone Responses to Local Changes in Loading and Systemic Stimuli.
    Windahl SH; Delisser PJ; Galea GL
    Methods Mol Biol; 2021; 2221():275-289. PubMed ID: 32979209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A uniform strain criterion for trabecular bone adaptation: do continuum-level strain gradients drive adaptation?
    Turner CH; Anne V; Pidaparti RM
    J Biomech; 1997 Jun; 30(6):555-63. PubMed ID: 9165388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of cortical bone mineral apposition rate in response to loading using an adaptive neuro-fuzzy inference system.
    Kumar R; Pathak VK
    Comput Methods Biomech Biomed Engin; 2023 Feb; 26(3):261-280. PubMed ID: 35373664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishing the relationship between loading parameters and bone adaptation.
    Tiwari AK; Kumar N
    Med Eng Phys; 2018 Jun; 56():16-26. PubMed ID: 29685858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling for osteogenic potential assessment of physical exercises based on loading-induced mechanobiological environments in cortical bone remodeling.
    Mertiya AS; Tiwari AK; Mishra A; Main RP; Tripathi D; Tiwari A
    Biomech Model Mechanobiol; 2023 Feb; 22(1):281-295. PubMed ID: 36305993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Canalicular fluid flow induced by bending of a long bone.
    Srinivasan S; Gross TS
    Med Eng Phys; 2000 Mar; 22(2):127-33. PubMed ID: 10854966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomical variations in cortical bone surface permeability: Tibia versus femur.
    Kumar R; Tiwari AK; Tripathi D; Main RP; Kumar N; Sihota P; Ambwani S; Sharma NN
    J Mech Behav Biomed Mater; 2021 Jan; 113():104122. PubMed ID: 33125957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanotransduction in bone: role of strain rate.
    Turner CH; Owan I; Takano Y
    Am J Physiol; 1995 Sep; 269(3 Pt 1):E438-42. PubMed ID: 7573420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone.
    Rubin CT; Lanyon LE
    J Orthop Res; 1987; 5(2):300-10. PubMed ID: 3572599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone.
    Skedros JG; Hunt KJ; Hughes PE; Winet H
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jul; 273(1):609-29. PubMed ID: 12808646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-amplitude, broad-frequency vibration effects on cortical bone formation in mice.
    Castillo AB; Alam I; Tanaka SM; Levenda J; Li J; Warden SJ; Turner CH
    Bone; 2006 Nov; 39(5):1087-1096. PubMed ID: 16793358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liver-derived IGF-I regulates cortical bone mass but is dispensable for the osteogenic response to mechanical loading in female mice.
    Svensson J; Windahl SH; Saxon L; Sjögren K; Koskela A; Tuukkanen J; Ohlsson C
    Am J Physiol Endocrinol Metab; 2016 Jul; 311(1):E138-44. PubMed ID: 27221117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.