These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 33755422)

  • 61. Van der Waals Layer Transfer of 2D Materials for Monolithic 3D Electronic System Integration: Review and Outlook.
    Kim JY; Ju X; Ang KW; Chi D
    ACS Nano; 2023 Feb; 17(3):1831-1844. PubMed ID: 36655854
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tailoring Quantum Tunneling in a Vanadium-Doped WSe
    Fan S; Yun SJ; Yu WJ; Lee YH
    Adv Sci (Weinh); 2020 Feb; 7(3):1902751. PubMed ID: 32042571
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electronic and Optical Properties of van der Waals Heterostructures Based on Two-Dimensional Perovskite (PEA)
    Li D; Li D; Yang A; Zhang H; Lai X; Liang C
    ACS Omega; 2021 Aug; 6(32):20877-20886. PubMed ID: 34423195
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Charge Transport in MoS
    Doan MH; Jin Y; Adhikari S; Lee S; Zhao J; Lim SC; Lee YH
    ACS Nano; 2017 Apr; 11(4):3832-3840. PubMed ID: 28291323
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Optoelectronic Properties of a van der Waals WS
    Wang Q; Zhang Q; Luo X; Wang J; Zhu R; Liang Q; Zhang L; Yong JZ; Yu Wong CP; Eda G; Smet JH; Wee ATS
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45235-45242. PubMed ID: 32924427
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Prediction of intrinsic two-dimensional ferroelectrics in In
    Ding W; Zhu J; Wang Z; Gao Y; Xiao D; Gu Y; Zhang Z; Zhu W
    Nat Commun; 2017 Apr; 8():14956. PubMed ID: 28387225
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tunable Negative Differential Resistance in van der Waals Heterostructures at Room Temperature by Tailoring the Interface.
    Fan S; Vu QA; Lee S; Phan TL; Han G; Kim YM; Yu WJ; Lee YH
    ACS Nano; 2019 Jul; 13(7):8193-8201. PubMed ID: 31260265
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Making van der Waals Heterostructures Assembly Accessible to Everyone.
    Martanov SG; Zhurbina NK; Pugachev MV; Duleba AI; Akmaev MA; Belykh VV; Kuntsevich AY
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33233389
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Layer Rotation-Angle-Dependent Excitonic Absorption in van der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy.
    Gogoi PK; Lin YC; Senga R; Komsa HP; Wong SL; Chi D; Krasheninnikov AV; Li LJ; Breese MBH; Pennycook SJ; Wee ATS; Suenaga K
    ACS Nano; 2019 Aug; 13(8):9541-9550. PubMed ID: 31345026
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Independent Band Modulation in 2D van der Waals Heterostructures via a Novel Device Architecture.
    Guo Z; Chen Y; Zhang H; Wang J; Hu W; Ding S; Zhang DW; Zhou P; Bao W
    Adv Sci (Weinh); 2018 Sep; 5(9):1800237. PubMed ID: 30250784
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Strain Switching in van der Waals Heterostructures Triggered by a Spin-Crossover Metal-Organic Framework.
    Boix-Constant C; García-López V; Navarro-Moratalla E; Clemente-León M; Zafra JL; Casado J; Guinea F; Mañas-Valero S; Coronado E
    Adv Mater; 2022 Mar; 34(11):e2110027. PubMed ID: 35032055
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Interlayer Trions in the MoS
    Deilmann T; Thygesen KS
    Nano Lett; 2018 Feb; 18(2):1460-1465. PubMed ID: 29377700
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dielectric Engineering of Electronic Correlations in a van der Waals Heterostructure.
    Steinleitner P; Merkl P; Graf A; Nagler P; Watanabe K; Taniguchi T; Zipfel J; Schüller C; Korn T; Chernikov A; Brem S; Selig M; Berghäuser G; Malic E; Huber R
    Nano Lett; 2018 Feb; 18(2):1402-1409. PubMed ID: 29365262
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Magnetic Proximity Coupling of Quantum Emitters in WSe
    Shayan K; Liu N; Cupo A; Ma Y; Luo Y; Meunier V; Strauf S
    Nano Lett; 2019 Oct; 19(10):7301-7308. PubMed ID: 31550164
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors.
    Roy T; Tosun M; Cao X; Fang H; Lien DH; Zhao P; Chen YZ; Chueh YL; Guo J; Javey A
    ACS Nano; 2015 Feb; 9(2):2071-9. PubMed ID: 25598307
    [TBL] [Abstract][Full Text] [Related]  

  • 76. WSe
    Li C; Yan X; Song X; Bao W; Ding S; Zhang DW; Zhou P
    Nanotechnology; 2017 Oct; 28(41):415201. PubMed ID: 28726689
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides.
    Azizi A; Eichfeld S; Geschwind G; Zhang K; Jiang B; Mukherjee D; Hossain L; Piasecki AF; Kabius B; Robinson JA; Alem N
    ACS Nano; 2015 May; 9(5):4882-90. PubMed ID: 25885122
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Signature of Spin-Resolved Quantum Point Contact in p-Type Trilayer WSe
    Sakanashi K; Krüger P; Watanabe K; Taniguchi T; Kim GH; Ferry DK; Bird JP; Aoki N
    Nano Lett; 2021 Sep; 21(18):7534-7541. PubMed ID: 34472869
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enhanced NO
    Cao Z; Zhao Y; Wu G; Cho J; Abid M; Choi M; Ó Coileáin C; Hung KM; Chang CR; Wu HC
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9495-9505. PubMed ID: 38334441
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Two-Dimensional Boron Phosphide/MoGe
    Nguyen C; Hoang NV; Phuc HV; Sin AY; Nguyen CV
    J Phys Chem Lett; 2021 Jun; 12(21):5076-5084. PubMed ID: 34028284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.