These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33755456)

  • 1. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites.
    Li J; Zhao S; Li Z; Liu D; Chi Y; Hu C
    Inorg Chem; 2021 Jun; 60(11):7785-7793. PubMed ID: 33755456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators.
    Yun WC; Yang MT; Lin KA
    J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks.
    Rojas-Buzo S; García-García P; Corma A
    ChemSusChem; 2018 Jan; 11(2):432-438. PubMed ID: 29139603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing reductive conversion of levulinic acid and levulinates to γ-valerolactone: Role of oxygen vacancy in MnOx catalysts.
    Liu Y; Gao L; Chang G; Zhou W
    Bioresour Technol; 2024 Aug; 406():131001. PubMed ID: 38897549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of Lewis and Brønsted Acid Sites in Zr-Based Metal-Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid.
    Wang F; Chen Z; Chen H; Goetjen TA; Li P; Wang X; Alayoglu S; Ma K; Chen Y; Wang T; Islamoglu T; Fang Y; Snurr RQ; Farha OK
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32090-32096. PubMed ID: 31441295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zr-Based Metal-Organic Frameworks with Intrinsic Peroxidase-Like Activity for Ultradeep Oxidative Desulfurization: Mechanism of H
    Zheng HQ; Zeng YN; Chen J; Lin RG; Zhuang WE; Cao R; Lin ZJ
    Inorg Chem; 2019 May; 58(10):6983-6992. PubMed ID: 31041865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support.
    Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-sealing encapsulation of phosphotungstic acid in microporous UiO-66 as a bifunctional catalyst for transfer hydrogenation of levulinic acid to γ-valerolactone.
    Tan H; Rong S; Zong Z; Zhang P; Zhao R; Song F; Cui H; Chen ZN; Yi W; Zhang F
    Phys Chem Chem Phys; 2023 Jul; 25(27):18215-18223. PubMed ID: 37394949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.
    Metzker G; Burtoloso AC
    Chem Commun (Camb); 2015 Sep; 51(75):14199-202. PubMed ID: 26258183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orderly Layered Zr-Benzylphosphonate Nanohybrids for Efficient Acid-Base-Mediated Bifunctional/Cascade Catalysis.
    Li H; Fang Z; He J; Yang S
    ChemSusChem; 2017 Feb; 10(4):681-686. PubMed ID: 27911042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol.
    Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L
    ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts.
    Chia M; Dumesic JA
    Chem Commun (Camb); 2011 Nov; 47(44):12233-5. PubMed ID: 22005944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural.
    Bui L; Luo H; Gunther WR; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2013 Jul; 52(31):8022-5. PubMed ID: 23757377
    [No Abstract]   [Full Text] [Related]  

  • 15. Catalytic hydrogenation of levulinic acid to γ-valerolactone over lignin-metal coordinated carbon nanospheres in water.
    Xu Y; Liang Y; Guo H; Qi X
    Int J Biol Macromol; 2023 Jun; 240():124451. PubMed ID: 37062379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone.
    Wright WR; Palkovits R
    ChemSusChem; 2012 Sep; 5(9):1657-67. PubMed ID: 22890968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A chemo-enzymatic route to synthesize (S)-γ-valerolactone from levulinic acid.
    Götz K; Liese A; Ansorge-Schumacher M; Hilterhaus L
    Appl Microbiol Biotechnol; 2013 May; 97(9):3865-73. PubMed ID: 23296499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.
    Tabasso S; Grillo G; Carnaroglio D; Calcio Gaudino E; Cravotto G
    Molecules; 2016 Mar; 21(4):413. PubMed ID: 27023511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions.
    Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z
    J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst.
    Popova M; Djinović P; Ristić A; Lazarova H; Dražić G; Pintar A; Balu AM; Novak Tušar N
    Front Chem; 2018; 6():285. PubMed ID: 30065923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.