These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33755568)

  • 1. LensIet VR: Thin, Flat and Wide-FOV Virtual Reality Display Using Fresnel Lens and LensIet Array.
    Bang K; Jo Y; Chae M; Lee B
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2545-2554. PubMed ID: 33755568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ThinVR: Heterogeneous microlens arrays for compact, 180 degree FOV VR near-eye displays.
    Ratcliff J; Supikov A; Alfaro S; Azuma R
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):1981-1990. PubMed ID: 32070971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical design and pupil swim analysis of a compact, large EPD and immersive VR head mounted display.
    Cheng D; Hou Q; Li Y; Zhang T; Li D; Huang Y; Liu Y; Wang Q; Hou W; Yang T; Feng Z; Wang Y
    Opt Express; 2022 Feb; 30(5):6584-6602. PubMed ID: 35299440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultracompact virtual reality system with a Pancharatnam-Berry phase deflector.
    Zou J; Luo Z; Zhao E; Rao Y; Wu ST
    Opt Express; 2022 Oct; 30(22):39652-39662. PubMed ID: 36298912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix optics representation and imaging analysis of a light-field near-eye display.
    Yao C; Cheng D; Wang Y
    Opt Express; 2020 Dec; 28(26):39976-39997. PubMed ID: 33379535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptually-guided Dual-mode Virtual Reality System For Motion-adaptive Display.
    Zeng H; Zhao R
    IEEE Trans Vis Comput Graph; 2023 Feb; PP():. PubMed ID: 37027616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays.
    Yöntem AÖ; Onural L
    J Opt Soc Am A Opt Image Sci Vis; 2011 Nov; 28(11):2359-75. PubMed ID: 22048304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stray light analysis and suppression method of a pancake virtual reality head-mounted display.
    Hou Q; Cheng D; Li Y; Zhang T; Li D; Huang Y; Chen H; Wang Q; Hou W; Yang T; Wang Y
    Opt Express; 2022 Dec; 30(25):44918-44932. PubMed ID: 36522905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slim near-eye display using pinhole aperture arrays.
    Akşit K; Kautz J; Luebke D
    Appl Opt; 2015 Apr; 54(11):3422-7. PubMed ID: 25967333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volumetric Head-Mounted Display With Locally Adaptive Focal Blocks.
    Yoo D; Lee S; Jo Y; Cho J; Choi S; Lee B
    IEEE Trans Vis Comput Graph; 2022 Feb; 28(2):1415-1427. PubMed ID: 32746283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catadioptric planar compound eye with large field of view.
    Deng H; Gao X; Ma M; Li Y; Li H; Zhang J; Zhong X
    Opt Express; 2018 May; 26(10):12455-12468. PubMed ID: 29801283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner.
    Shu T; Hu G; Wu R; Li H; Zhang Z; Liu X
    Opt Express; 2022 Aug; 30(18):31714-31727. PubMed ID: 36242248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle.
    Xiao J; Liu J; Lv Z; Shi X; Han J
    Opt Express; 2019 Jan; 27(2):1683-1692. PubMed ID: 30696230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide.
    Wang Q; Cheng D; Hou Q; Gu L; Wang Y
    Opt Express; 2020 Nov; 28(23):35376-35394. PubMed ID: 33182985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design method of an ultra-thin two-dimensional geometrical waveguide near-eye display based on forward-ray-tracing and maximum FOV analysis.
    Ruan N; Shi F; Tian Y; Xing P; Zhang W; Qiao S
    Opt Express; 2023 Oct; 31(21):33799-33814. PubMed ID: 37859152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an immersive virtual reality head-mounted display with high performance.
    Wang Y; Liu W; Meng X; Fu H; Zhang D; Kang Y; Feng R; Wei Z; Zhu X; Jiang G
    Appl Opt; 2016 Sep; 55(25):6969-77. PubMed ID: 27607272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doubling the optical efficiency of VR systems with a directional backlight and a diffractive deflection film.
    Zou J; Zhan T; Hsiang EL; Du X; Yu X; Li K; Wu ST
    Opt Express; 2021 Jun; 29(13):20673-20686. PubMed ID: 34266151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of an optical see-through light-field near-eye display using a discrete lenslet array.
    Yao C; Cheng D; Yang T; Wang Y
    Opt Express; 2018 Jul; 26(14):18292-18301. PubMed ID: 30114010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box.
    Duan X; Liu J; Shi X; Zhang Z; Xiao J
    Opt Express; 2020 Oct; 28(21):31316-31329. PubMed ID: 33115107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fresnel phasing of segmented mirror telescopes.
    Chanan G; Troy M; Surdej I; Gutt G; Roberts LC
    Appl Opt; 2011 Nov; 50(33):6283-93. PubMed ID: 22108889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.