These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3375559)

  • 1. Future trends in heating technology of deep-seated tumors.
    Turner PF; Schaefermeyer T; Saxton T
    Recent Results Cancer Res; 1988; 107():249-62. PubMed ID: 3375559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep regional hyperthermia: comparison between the annular phased array and the sigma-60 applicator in the same patients.
    Feldmann HJ; Molls M; Krümplemann S; Stuschke M; Sack H
    Int J Radiat Oncol Biol Phys; 1993 Apr; 26(1):111-6. PubMed ID: 8482617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep local hyperthermia for cancer therapy: external electromagnetic and ultrasound techniques.
    Cheung AY; Neyzari A
    Cancer Res; 1984 Oct; 44(10 Suppl):4736s-4744s. PubMed ID: 6467228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Investigational study of various kinds of problems in heating methods. Regarding equipment. The BSD-1000 hyperthermia system].
    Tsukada A
    Gan No Rinsho; 1986 Oct; 32(13):1644-51. PubMed ID: 3795484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A HF EM installation allowing simultaneous whole body and deep local EM hyperthermia.
    Mazokhin VN; Kolmakov DN; Lucheyov NA; Gelvich EA; Troshin II
    Int J Hyperthermia; 1999; 15(4):309-29. PubMed ID: 10458570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Methods for creating hyperthermia in tumors by using electromagnetic fields].
    Gusev AN; Osinskiĭ SP
    Eksp Onkol; 1988; 10(3):14-21. PubMed ID: 3044770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating.
    Kosterev VV; Kramer-Ageev EA; Mazokhin VN; van Rhoon GC; Crezee J
    Int J Hyperthermia; 2015 Jun; 31(4):443-52. PubMed ID: 25875224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-applicator hyperthermia system description using scattering parameters.
    Raskmark P; Larsen T; Hornsleth SN
    Int J Hyperthermia; 1994; 10(1):143-51. PubMed ID: 8144985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat delivery and thermometry in clinical hyperthermia.
    Hand JW
    Recent Results Cancer Res; 1987; 104():1-23. PubMed ID: 3296047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spherical-section ultrasound phased array applicator for deep localized hyperthermia.
    Ebbini ES; Cain CA
    IEEE Trans Biomed Eng; 1991 Jul; 38(7):634-43. PubMed ID: 1879855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional power deposition for hyperthermia: theoretical approaches and considerations.
    Oleson JR
    Cancer Res; 1984 Oct; 44(10 Suppl):4761s-4764s. PubMed ID: 6467229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional hyperthermia: a clinical appraisal of noninvasive deep-heating methods.
    Gibbs FA
    Cancer Res; 1984 Oct; 44(10 Suppl):4765s-4770s. PubMed ID: 6380714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discussion based on numerical and experimental studies on heating characteristics of an RF rectangular resonant cavity applicator for hyperthermia targeting deep-seated tumors.
    Tange Y; Kanai Y; Saitoh Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3536-9. PubMed ID: 18002760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total implants for hyperthermia application and thermometry.
    Doss JD; McCabe CW
    Int J Hyperthermia; 1988; 4(6):617-25. PubMed ID: 3171257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stanford University institutional report. Phase I evaluation of equipment for hyperthermia treatment of cancer.
    Kapp DS; Fessenden P; Samulski TV; Bagshaw MA; Cox RS; Lee ER; Lohrbach AW; Meyer JL; Prionas SD
    Int J Hyperthermia; 1988; 4(1):75-115. PubMed ID: 3346585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heating properties of a new hyperthermia system for deep tumors without contact.
    Yokoyama K; Kato K; Igarashi W; Shindo Y; Kubo M; Takahashi H; Uzuka T; Fujii Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():310-3. PubMed ID: 22254311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An edge-element based finite element model of microwave heating in hyperthermia: method and verification.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):426-40. PubMed ID: 12227929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Present and future status of noninvasive selective deep heating using RF in hyperthermia.
    Kato H; Ishida T
    Med Biol Eng Comput; 1993 Jul; 31 Suppl():S2-11. PubMed ID: 8231321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiofrequency capacitive hyperthermia for deep-seated tumors. I. Studies on thermometry.
    Hiraoka M; Jo S; Akuta K; Nishimura Y; Takahashi M; Abe M
    Cancer; 1987 Jul; 60(1):121-7. PubMed ID: 3581026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.