BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 33755743)

  • 1. Enzymology of extracellular NAD metabolism.
    Gasparrini M; Sorci L; Raffaelli N
    Cell Mol Life Sci; 2021 Apr; 78(7):3317-3331. PubMed ID: 33755743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated regulation in human T cells of nucleotide-hydrolyzing ecto-enzymatic activities, including CD38 and PC-1. Possible role in the recycling of nicotinamide adenine dinucleotide metabolites.
    Deterre P; Gelman L; Gary-Gouy H; Arrieumerlou C; Berthelier V; Tixier JM; Ktorza S; Goding J; Schmitt C; Bismuth G
    J Immunol; 1996 Aug; 157(4):1381-8. PubMed ID: 8759717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinamide adenine dinucleotide (NAD) and its metabolites inhibit T lymphocyte proliferation: role of cell surface NAD glycohydrolase and pyrophosphatase activities.
    Bortell R; Moss J; McKenna RC; Rigby MR; Niedzwiecki D; Stevens LA; Patton WA; Mordes JP; Greiner DL; Rossini AA
    J Immunol; 2001 Aug; 167(4):2049-59. PubMed ID: 11489987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADP-ribosylation of membrane proteins: unveiling the secrets of a crucial regulatory mechanism in mammalian cells.
    Koch-Nolte F; Adriouch S; Bannas P; Krebs C; Scheuplein F; Seman M; Haag F
    Ann Med; 2006; 38(3):188-99. PubMed ID: 16720433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymology of NAD+ synthesis.
    Magni G; Amici A; Emanuelli M; Raffaelli N; Ruggieri S
    Adv Enzymol Relat Areas Mol Biol; 1999; 73():135-82, xi. PubMed ID: 10218108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review: NAD +: a modulator of immune functions.
    Grahnert A; Grahnert A; Klein C; Schilling E; Wehrhahn J; Hauschildt S
    Innate Immun; 2011 Apr; 17(2):212-33. PubMed ID: 20388721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NAD metabolism in Vibrio cholerae.
    Foster JW; Brestel C
    J Bacteriol; 1982 Jan; 149(1):368-71. PubMed ID: 6119307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic mechanisms of two NAD:arginine ADP-ribosyltransferases: the soluble, salt-stimulated transferase from turkey erythrocytes and choleragen, a toxin from Vibrio cholerae.
    Osborne JC; Stanley SJ; Moss J
    Biochemistry; 1985 Sep; 24(19):5235-40. PubMed ID: 3935159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human NAD metabolome: Functions, metabolism and compartmentalization.
    Nikiforov A; Kulikova V; Ziegler M
    Crit Rev Biochem Mol Biol; 2015; 50(4):284-97. PubMed ID: 25837229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecto-ADP-ribose transferases: cell-surface response to local tissue injury.
    Zolkiewska A
    Physiology (Bethesda); 2005 Dec; 20():374-81. PubMed ID: 16287986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathophysiological aspects of cellular pyridine nucleotide metabolism: focus on the vascular endothelium. Review.
    Szabó C
    Acta Physiol Hung; 2003; 90(3):175-93. PubMed ID: 14594189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD38 controls ADP-ribosyltransferase-2-catalyzed ADP-ribosylation of T cell surface proteins.
    Krebs C; Adriouch S; Braasch F; Koestner W; Leiter EH; Seman M; Lund FE; Oppenheimer N; Haag F; Koch-Nolte F
    J Immunol; 2005 Mar; 174(6):3298-305. PubMed ID: 15749861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism Dealing with Thermal Degradation of NAD
    Hachisuka SI; Sato T; Atomi H
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28652302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities.
    Yegutkin GG
    Crit Rev Biochem Mol Biol; 2014; 49(6):473-97. PubMed ID: 25418535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SnapShot: ADP-Ribosylation Signaling.
    Hottiger MO
    Mol Cell; 2015 Jun; 58(6):1134-1134.e1. PubMed ID: 26091348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADP-ribosylarginine hydrolases and ADP-ribosyltransferases. Partners in ADP-ribosylation cycles.
    Moss J; Zolkiewska A; Okazaki I
    Adv Exp Med Biol; 1997; 419():25-33. PubMed ID: 9193633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells.
    Hara N; Yamada K; Shibata T; Osago H; Hashimoto T; Tsuchiya M
    J Biol Chem; 2007 Aug; 282(34):24574-82. PubMed ID: 17604275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.
    Han S; Tainer JA
    Int J Med Microbiol; 2002 Feb; 291(6-7):523-9. PubMed ID: 11890553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of NUDIX Hydrolases in NAD and ADP-Ribose Metabolism in Mammals.
    Kulikova VA; Nikiforov AA
    Biochemistry (Mosc); 2020 Aug; 85(8):883-894. PubMed ID: 33045949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.