These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. Fracasso A; Trindade LM; Amaducci S BMC Plant Biol; 2016 May; 16(1):115. PubMed ID: 27208977 [TBL] [Abstract][Full Text] [Related]
5. Screening cotton genotypes for their drought tolerance ability based on the expression level of dehydration-responsive element-binding protein and proline biosynthesis-related genes and morpho-physio-biochemical responses. Tisarum R; Theerawitaya C; Praseartkul P; Chungloo D; Ullah H; Himanshu SK; Datta A; Cha-Um S Protoplasma; 2024 Jul; 261(4):783-798. PubMed ID: 38376598 [TBL] [Abstract][Full Text] [Related]
6. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. Fracasso A; Trindade L; Amaducci S J Plant Physiol; 2016 Jan; 190():1-14. PubMed ID: 26624226 [TBL] [Abstract][Full Text] [Related]
7. Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Li H; Li Y; Ke Q; Kwak SS; Zhang S; Deng X Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33271965 [TBL] [Abstract][Full Text] [Related]
8. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species. Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108 [TBL] [Abstract][Full Text] [Related]
9. Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions. Pasini L; Bergonti M; Fracasso A; Marocco A; Amaducci S J Plant Physiol; 2014 Apr; 171(7):537-48. PubMed ID: 24655390 [TBL] [Abstract][Full Text] [Related]
10. Whole plant response of Pongamia pinnata to drought stress tolerance revealed by morpho-physiological, biochemical and transcriptome analysis. Rajarajan K; Sakshi S; Taria S; Prathima PT; Radhakrishna A; Anuragi H; Ashajyothi M; Bharati A; Handa AK; Arunachalam A Mol Biol Rep; 2022 Oct; 49(10):9453-9463. PubMed ID: 36057878 [TBL] [Abstract][Full Text] [Related]
11. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. Yang Z; Chi X; Guo F; Jin X; Luo H; Hawar A; Chen Y; Feng K; Wang B; Qi J; Yang Y; Sun B J Plant Physiol; 2020; 246-247():153142. PubMed ID: 32112957 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. Johnson SM; Lim FL; Finkler A; Fromm H; Slabas AR; Knight MR BMC Genomics; 2014 Jun; 15(1):456. PubMed ID: 24916767 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome analysis of drought-tolerant sorghum genotype SC56 in response to water stress reveals an oxidative stress defense strategy. Azzouz-Olden F; Hunt AG; Dinkins R Mol Biol Rep; 2020 May; 47(5):3291-3303. PubMed ID: 32303956 [TBL] [Abstract][Full Text] [Related]
14. Association between Reactive Oxygen Species, Transcription Factors, and Candidate Genes in Drought-Resistant Sorghum. Liu J; Wang X; Wu H; Zhu Y; Ahmad I; Dong G; Zhou G; Wu Y Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928168 [TBL] [Abstract][Full Text] [Related]
15. Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Abreha KB; Enyew M; Carlsson AS; Vetukuri RR; Feyissa T; Motlhaodi T; Ng'uni D; Geleta M Planta; 2021 Dec; 255(1):20. PubMed ID: 34894286 [TBL] [Abstract][Full Text] [Related]
16. Association mapping by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought. Spindel JE; Dahlberg J; Colgan M; Hollingsworth J; Sievert J; Staggenborg SH; Hutmacher R; Jansson C; Vogel JP BMC Genomics; 2018 Sep; 19(1):679. PubMed ID: 30223789 [TBL] [Abstract][Full Text] [Related]
17. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Goche T; Shargie NG; Cummins I; Brown AP; Chivasa S; Ngara R Sci Rep; 2020 Jul; 10(1):11835. PubMed ID: 32678202 [TBL] [Abstract][Full Text] [Related]
18. Effects of Nitroxin and arbuscular mycorrhizal fungi on the agro-physiological traits and grain yield of sorghum (Sorghum bicolor L.) under drought stress conditions. Kamali S; Mehraban A PLoS One; 2020; 15(12):e0243824. PubMed ID: 33370318 [TBL] [Abstract][Full Text] [Related]
19. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress. Sanjari S; Shobbar ZS; Ghanati F; Afshari-Behbahanizadeh S; Farajpour M; Jokar M; Khazaei A; Shahbazi M Plant Physiol Biochem; 2021 Feb; 159():383-391. PubMed ID: 33450508 [TBL] [Abstract][Full Text] [Related]
20. Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials. Shah TM; Imran M; Atta BM; Ashraf MY; Hameed A; Waqar I; Shafiq M; Hussain K; Naveed M; Aslam M; Maqbool MA BMC Plant Biol; 2020 Apr; 20(1):171. PubMed ID: 32303179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]