These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 33755861)

  • 21. Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds.
    Ghaffari R; Salimi-Kenari H; Fahimipour F; Rabiee SM; Adeli H; Dashtimoghadam E
    Int J Biol Macromol; 2020 Apr; 148():434-448. PubMed ID: 31953173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bi-layered constructs of poly(glycerol-sebacate)-β-tricalcium phosphate for bone-soft tissue interface applications.
    Tevlek A; Hosseinian P; Ogutcu C; Turk M; Aydin HM
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():316-324. PubMed ID: 28024592
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Nakhaee FM; Rajabi M; Bakhsheshi-Rad HR
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34038876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The incorporation of β-tricalcium phosphate nanoparticles within silk fibroin composite scaffolds for enhanced bone regeneration: An in vitro and in vivo study.
    Jing T; Yi Liu ; Xu L; Chen C; Liu F
    J Biomater Appl; 2022 Apr; 36(9):1567-1578. PubMed ID: 35135370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical properties and biocompatibility of a core-sheath structure composite scaffold for bone tissue engineering in vitro.
    Wang C; Meng G; Zhang L; Xiong Z; Liu J
    J Biomed Biotechnol; 2012; 2012():579141. PubMed ID: 22505814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface Modified β-Tricalcium phosphate enhanced stem cell osteogenic differentiation in vitro and bone regeneration in vivo.
    Choy CS; Lee WF; Lin PY; Wu YF; Huang HM; Teng NC; Pan YH; Salamanca E; Chang WJ
    Sci Rep; 2021 Apr; 11(1):9234. PubMed ID: 33927241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro and in vivo biocompatibility assessment of free radical scavenging nanocomposite scaffolds for bone tissue regeneration.
    Dulany K; Hepburn K; Goins A; Allen JB
    J Biomed Mater Res A; 2020 Feb; 108(2):301-315. PubMed ID: 31606924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration.
    Zheng Y; Yang Y; Deng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():770-782. PubMed ID: 30889752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Injectable tricalcium phosphate/calcium sulfate granule enhances bone repair by reversible setting reaction.
    Cheng K; Zhu W; Weng X; Zhang L; Liu Y; Han C; Xia W
    Biochem Biophys Res Commun; 2021 Jun; 557():151-158. PubMed ID: 33865223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced osteogenesis of honeycomb β-tricalcium phosphate scaffold by construction of interconnected pore structure: An in vivo study.
    Lu T; Feng S; He F; Ye J
    J Biomed Mater Res A; 2020 Mar; 108(3):645-653. PubMed ID: 31747100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L
    J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of dense polylactic acid/beta-tricalcium phosphate scaffolds for bone tissue engineering.
    Yanoso-Scholl L; Jacobson JA; Bradica G; Lerner AL; O'Keefe RJ; Schwarz EM; Zuscik MJ; Awad HA
    J Biomed Mater Res A; 2010 Dec; 95(3):717-26. PubMed ID: 20725979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study on biodegradation and biocompatibility of multichannel calcium phosphate based bone substitutes.
    Kang HJ; Makkar P; Padalhin AR; Lee GH; Im SB; Lee BT
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110694. PubMed ID: 32204008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering.
    Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC
    Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering.
    Ye X; Zhang Y; Liu T; Chen Z; Chen W; Wu Z; Wang Y; Li J; Li C; Jiang T; Zhang Y; Wu H; Xu X
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1553-1561. PubMed ID: 35439474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological evaluation of porous nanocomposite scaffolds based on strontium substituted β-TCP and bioactive glass: An in vitro and in vivo study.
    Kazemi M; Dehghan MM; Azami M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110071. PubMed ID: 31546377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.