These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 33756104)

  • 1. Single-trial decoding of movement intentions using functional ultrasound neuroimaging.
    Norman SL; Maresca D; Christopoulos VN; Griggs WS; Demene C; Tanter M; Shapiro MG; Andersen RA
    Neuron; 2021 May; 109(9):1554-1566.e4. PubMed ID: 33756104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical local field potential encodes movement intentions in the posterior parietal cortex.
    Scherberger H; Jarvis MR; Andersen RA
    Neuron; 2005 Apr; 46(2):347-54. PubMed ID: 15848811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding effector-dependent and effector-independent movement intentions from human parieto-frontal brain activity.
    Gallivan JP; McLean DA; Smith FW; Culham JC
    J Neurosci; 2011 Nov; 31(47):17149-68. PubMed ID: 22114283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grasp movement decoding from premotor and parietal cortex.
    Townsend BR; Subasi E; Scherberger H
    J Neurosci; 2011 Oct; 31(40):14386-98. PubMed ID: 21976524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High accuracy decoding of movement target direction in non-human primates based on common spatial patterns of local field potentials.
    Ince NF; Gupta R; Arica S; Tewfik AH; Ashe J; Pellizzer G
    PLoS One; 2010 Dec; 5(12):e14384. PubMed ID: 21200434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding motor plans using a closed-loop ultrasonic brain-machine interface.
    Griggs WS; Norman SL; Deffieux T; Segura F; Osmanski BF; Chau G; Christopoulos V; Liu C; Tanter M; Shapiro MG; Andersen RA
    Nat Neurosci; 2024 Jan; 27(1):196-207. PubMed ID: 38036744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal synchronization in human posterior parietal cortex during reach planning.
    Van Der Werf J; Jensen O; Fries P; Medendorp WP
    J Neurosci; 2010 Jan; 30(4):1402-12. PubMed ID: 20107066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates.
    Choi H; Lee J; Park J; Lee S; Ahn KH; Kim IY; Lee KM; Jang DP
    J Neural Eng; 2018 Feb; 15(1):016011. PubMed ID: 28875947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding action intentions from preparatory brain activity in human parieto-frontal networks.
    Gallivan JP; McLean DA; Valyear KF; Pettypiece CE; Culham JC
    J Neurosci; 2011 Jun; 31(26):9599-610. PubMed ID: 21715625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas.
    Gallivan JP; McLean DA; Flanagan JR; Culham JC
    J Neurosci; 2013 Jan; 33(5):1991-2008. PubMed ID: 23365237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing differential representation of hand movements in multiple domains using stereo-electroencephalographic recordings.
    Li G; Jiang S; Meng J; Chai G; Wu Z; Fan Z; Hu J; Sheng X; Zhang D; Chen L; Zhu X
    Neuroimage; 2022 Apr; 250():118969. PubMed ID: 35124225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A brief comparative review of primate posterior parietal cortex: A novel hypothesis on the human toolmaker.
    Kastner S; Chen Q; Jeong SK; Mruczek REB
    Neuropsychologia; 2017 Oct; 105():123-134. PubMed ID: 28159617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The parietal reach region codes the next planned movement in a sequential reach task.
    Batista AP; Andersen RA
    J Neurophysiol; 2001 Feb; 85(2):539-44. PubMed ID: 11160491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of spike train spectra in two parietal reach areas.
    Buneo CA; Jarvis MR; Batista AP; Andersen RA
    Exp Brain Res; 2003 Nov; 153(2):134-9. PubMed ID: 14610632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of Neural Variability in Premotor, Motor, and Posterior Parietal Cortex during Change of Motor Intention.
    Saberi-Moghadam S; Ferrari-Toniolo S; Ferraina S; Caminiti R; Battaglia-Mayer A
    J Neurosci; 2016 Apr; 36(16):4614-23. PubMed ID: 27098702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding Saccade Intention From Primate Prefrontal Cortical Local Field Potentials Using Spectral, Spatial, and Temporal Dimensionality Reduction.
    Johnston R; Doucet G; Boulay C; Miller K; Martinez-Trujillo J; Sachs A
    Int J Neural Syst; 2021 Jun; 31(6):2150023. PubMed ID: 33931006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network.
    Michaels JA; Dann B; Intveld RW; Scherberger H
    J Neurosci; 2015 Aug; 35(32):11415-32. PubMed ID: 26269647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Reach Goals in Depth and Direction from the Parietal Cortex.
    Filippini M; Breveglieri R; Hadjidimitrakis K; Bosco A; Fattori P
    Cell Rep; 2018 Apr; 23(3):725-732. PubMed ID: 29669279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed-delay period.
    Crammond DJ; Kalaska JF
    Exp Brain Res; 1989; 76(2):458-62. PubMed ID: 2767196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.
    Revechkis B; Aflalo TN; Kellis S; Pouratian N; Andersen RA
    J Neural Eng; 2014 Dec; 11(6):066014. PubMed ID: 25394419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.