These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33756220)

  • 1. Ultrasonic wireless power links for battery-free condition monitoring in metallic enclosures.
    Fu H; Rao J; Harb MS; Theodossiades S
    Ultrasonics; 2021 Jul; 114():106395. PubMed ID: 33756220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers.
    Rong Z; Zhang M; Ning Y; Pang W
    Sci Rep; 2022 Sep; 12(1):16174. PubMed ID: 36171230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless Power Transmission for Implantable Medical Devices Using Focused Ultrasound and a Miniaturized 1-3 Piezoelectric Composite Receiving Transducer.
    Yi X; Zheng W; Cao H; Wang S; Feng X; Yang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3592-3598. PubMed ID: 34357865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and characterization of an ultrasonic lamb-wave power delivery system.
    Kural A; Pullin R; Holford K; Lees J; Naylon J; Paget C; Featherston C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1134-40. PubMed ID: 25004476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Enhancement of an Ultrasonic Power Transfer System Through a Tightly Coupled Solid Media Using a KLM Model.
    Kar B; Wallrabe U
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32235434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portable through-metal ultrasonic power transfer using a dry-coupled detachable transmitter.
    Allam A; Patel H; Sugino C; St John C; Steinfeldt J; Reinke C; Erturk A; El-Kady I
    Ultrasonics; 2024 Jul; 141():107339. PubMed ID: 38805954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Online Condition Monitoring of Rotating Machines by Self-Powered Piezoelectric Transducer from Real-Time Experimental Investigations.
    Khazaee M; Rosendahl LA; Rezania A
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive control of the power transferred to an implanted device by an ultrasonic transcutaneous energy transfer link.
    Shmilovitz D; Ozeri S; Wang CC; Spivak B
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):995-1004. PubMed ID: 24013825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A full-duplex ultrasonic through-wall communication and power delivery system.
    Ashdown J; Wilt KR; Lawry TJ; Saulnier GJ; Shoudy DA; Scarton HA; Gavens AJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Mar; 60(3):587-95. PubMed ID: 23475924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the air coupling of bulk piezoelectric transducers with wedges of power-law profiles: a numerical study.
    Remillieux MC; Anderson BE; Le Bas PY; Ulrich TJ
    Ultrasonics; 2014 Jul; 54(5):1409-16. PubMed ID: 24636675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explore Ultrasonic-Induced Mechanoluminescent Solutions towards Realising Remote Structural Health Monitoring.
    Philibert M; Yao K
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic Sensing and Actuation in Laminate Structures Using Bondline-Embedded d35 Piezoelectric Sensors.
    Altammar H; Dhingra A; Salowitz N
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants.
    Meng M; Kiani M
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):98-107. PubMed ID: 27662684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Lamb Waves Based Ultrasonic System for the Simultaneous Data Communication, Defect Inspection, and Power Transmission.
    Sun Y; Xu Y; Li W; Li Q; Ding X; Huang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3192-3203. PubMed ID: 34101590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal resonance configuration for ultrasonic wireless power transmission to millimeter-sized biomedical implants.
    Miao Meng ; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1934-1937. PubMed ID: 28268706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A flexible piezoelectric transducer design for efficient generation and reception of ultrasonic Lamb waves.
    Gachagan A; Hayward G; Banks R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1175-82. PubMed ID: 16212257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic power delivery to pipeline monitoring wireless sensors.
    Kiziroglou ME; Boyle DE; Wright SW; Yeatman EM
    Ultrasonics; 2017 May; 77():54-60. PubMed ID: 28183067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic Lamb Waves for Wireless Power Transfer.
    Tseng VF; Bedair SS; Radice JJ; Drummond TE; Lazarus N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):664-670. PubMed ID: 31647431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive Comparative Study on Inductive and Ultrasonic Wireless Power Transmission to Biomedical Implants.
    Ibrahim A; Meng M; Kiani M
    IEEE Sens J; 2018 May; 18(9):3813-3826. PubMed ID: 30344453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogel-Fractal Piezoelectric Bilayer Transducer for Wireless Biochemical Sensing.
    Islam S; Park M; Song SH; Kim A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4089-4092. PubMed ID: 33018897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.