These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 33756288)
21. Effect of slow-released biomass alkaline amendments oyster shell on microecology in acidic heavy metal contaminated paddy soils. Huang H; Liu H; Zhang R; Chen Y; Lei L; Qiu C; Xu H J Environ Manage; 2022 Oct; 319():115683. PubMed ID: 35853307 [TBL] [Abstract][Full Text] [Related]
22. Remediation effectiveness of vermicompost for a potentially toxic metal-contaminated tropical acidic soil in China. Liu B; Wu C; Pan P; Fu Y; He Z; Wu L; Li Q Ecotoxicol Environ Saf; 2019 Oct; 182():109394. PubMed ID: 31276885 [TBL] [Abstract][Full Text] [Related]
23. [Effects of Different Amendments on Cadmium Accumulation in Rice Safety in Cadmium-Contaminated Farmland Under Two Flooding Treatments]. Wang G; Yu HY; Li TX; Tang C Huan Jing Ke Xue; 2022 Feb; 43(2):1015-1022. PubMed ID: 35075875 [TBL] [Abstract][Full Text] [Related]
24. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system. Xu C; Chen HX; Xiang Q; Zhu HH; Wang S; Zhu QH; Huang DY; Zhang YZ Environ Sci Pollut Res Int; 2018 Jan; 25(2):1147-1156. PubMed ID: 29079982 [TBL] [Abstract][Full Text] [Related]
25. Metal availability, soil nutrient, and enzyme activity in response to application of organic amendments in Cd-contaminated soil. Yang Z; Liu L; Lv Y; Cheng Z; Xu X; Xian J; Zhu X; Yang Y Environ Sci Pollut Res Int; 2018 Jan; 25(3):2425-2435. PubMed ID: 29124646 [TBL] [Abstract][Full Text] [Related]
26. [In-situ Remediation Effect of Cadmium-polluted Agriculture Land Using Different Amendments Under Rice-wheat Rotation]. Zhang L; Tang C; Yu HY; Li TX; Zhang XZ; Huang HG Huan Jing Ke Xue; 2023 Mar; 44(3):1698-1705. PubMed ID: 36922230 [TBL] [Abstract][Full Text] [Related]
27. [Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality]. Sun YB; Wang PC; Xu YM; Sun Y; Qin X; Zhao LJ; Wang L; Liang XF Huan Jing Ke Xue; 2014 Dec; 35(12):4720-6. PubMed ID: 25826946 [TBL] [Abstract][Full Text] [Related]
28. Rhizosphere activity induced mobilization of heavy metals immobilized by combined amendments in a typical lead/zinc smelter-contaminated soil. Luo Y; Tan C; He Y; Chen Y; Wan Z; Fu T; Wu Y Chemosphere; 2023 Feb; 313():137556. PubMed ID: 36528153 [TBL] [Abstract][Full Text] [Related]
29. The effect of different amendments on Cd availability and bacterial community after three-year consecutive application in Cd-contaminated paddy soils. Huang H; Yu J; Chen L; Zhang L; Li T; Ye D; Zhang X; Wang Y; Zheng Z; Liu T; Yu H Environ Res; 2024 Oct; 259():119459. PubMed ID: 38942257 [TBL] [Abstract][Full Text] [Related]
30. Alkaline lignin does not immobilize cadmium in soils but decreases cadmium accumulation in the edible part of lettuce (Lactuca sativa L.). He L; Yu Y; Lin J; Hong Z; Dai Z; Liu X; Tang C; Xu J Environ Pollut; 2022 Oct; 310():119879. PubMed ID: 35931389 [TBL] [Abstract][Full Text] [Related]
31. Mitigation of rice cadmium (Cd) accumulation by joint application of organic amendments and selenium (Se) in high-Cd-contaminated soils. Liu N; Jiang Z; Li X; Liu H; Li N; Wei S Chemosphere; 2020 Feb; 241():125106. PubMed ID: 31683428 [TBL] [Abstract][Full Text] [Related]
32. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Lee SH; Lee JS; Choi YJ; Kim JG Chemosphere; 2009 Nov; 77(8):1069-75. PubMed ID: 19786291 [TBL] [Abstract][Full Text] [Related]
33. Soil microbial community responses to the application of a combined amendment in a historical zinc smelting area. Tan C; Luo Y; Fu T Environ Sci Pollut Res Int; 2022 Feb; 29(9):13056-13070. PubMed ID: 34564816 [TBL] [Abstract][Full Text] [Related]
34. Soil amendments alter cadmium distribution and bacterial community structure in paddy soils. Li Q; Chang J; Li L; Lin X; Li Y Sci Total Environ; 2024 May; 924():171399. PubMed ID: 38458464 [TBL] [Abstract][Full Text] [Related]
35. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Wang F; Wang X; Song N Sci Total Environ; 2021 Aug; 784():147133. PubMed ID: 33895518 [TBL] [Abstract][Full Text] [Related]
36. Remediation of Cd-, Pb-, Cu-, and Zn-contaminated soil using cow bone meal and oyster shell meal. Zheng X; Zou M; Zhang B; Lai W; Zeng X; Chen S; Wang M; Yi X; Tao X; Lu G Ecotoxicol Environ Saf; 2022 Jan; 229():113073. PubMed ID: 34923330 [TBL] [Abstract][Full Text] [Related]
37. [Effects of Four Amendments on Cadmium Bioavailability and Enzyme Activity in Purple Soil]. Ding XR; Xu M; Yan NZ; Wang ZF; Li ZQ; Huang R; Wang Y; Dai WC; Gao M Huan Jing Ke Xue; 2024 Jun; 45(6):3523-3532. PubMed ID: 38897772 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils. Sun Y; Sun G; Xu Y; Liu W; Liang X; Wang L J Environ Manage; 2016 Jan; 166():204-10. PubMed ID: 26513318 [TBL] [Abstract][Full Text] [Related]
39. Remediation of Cd, Pb and as Co-contaminated Paddy Soil by Applying Different Amendments. Nong X; Zhang C; Chen H; Rong Q; Gao H; Jin X Bull Environ Contam Toxicol; 2020 Aug; 105(2):283-290. PubMed ID: 32734360 [TBL] [Abstract][Full Text] [Related]
40. Effect of amendments on bioavailability of cadmium in soil-rice system: a field experiment study. Li X; Mu L; Zhang C; Fu T; He T Environ Sci Pollut Res Int; 2023 Mar; 30(13):37659-37668. PubMed ID: 36574132 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]