These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33756413)

  • 1. Hydrodynamic interactions significantly alter the dynamics of actin networks and result in a length scale dependent loss modulus.
    Karimi R; Reza Alam M; Mofrad MRK
    J Biomech; 2021 May; 120():110352. PubMed ID: 33756413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions.
    Maxian O; Peláez RP; Mogilner A; Donev A
    PLoS Comput Biol; 2021 Dec; 17(12):e1009240. PubMed ID: 34871298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
    Gardel ML; Shin JH; MacKintosh FC; Mahadevan L; Matsudaira PA; Weitz DA
    Phys Rev Lett; 2004 Oct; 93(18):188102. PubMed ID: 15525211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheology of semiflexible bundle networks with transient linkers.
    Müller KW; Bruinsma RF; Lieleg O; Bausch AR; Wall WA; Levine AJ
    Phys Rev Lett; 2014 Jun; 112(23):238102. PubMed ID: 24972229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformations, hydrodynamic interactions, and instabilities of sedimenting semiflexible filaments.
    Saggiorato G; Elgeti J; Winkler RG; Gompper G
    Soft Matter; 2015 Oct; 11(37):7337-44. PubMed ID: 26270609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational analysis of viscoelastic properties of crosslinked actin networks.
    Kim T; Hwang W; Lee H; Kamm RD
    PLoS Comput Biol; 2009 Jul; 5(7):e1000439. PubMed ID: 19609348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passive and active microrheology for cross-linked F-actin networks in vitro.
    Lee H; Ferrer JM; Nakamura F; Lang MJ; Kamm RD
    Acta Biomater; 2010 Apr; 6(4):1207-18. PubMed ID: 19883801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusing wave spectroscopy microrheology of actin filament networks.
    Palmer A; Xu J; Kuo SC; Wirtz D
    Biophys J; 1999 Feb; 76(2):1063-71. PubMed ID: 9916038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rods-on-string idealization captures semiflexible filament dynamics.
    Chandran PL; Mofrad MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011906. PubMed ID: 19257068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of Slow Stress Relaxation in the Cytoskeleton.
    Mulla Y; MacKintosh FC; Koenderink GH
    Phys Rev Lett; 2019 May; 122(21):218102. PubMed ID: 31283330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The elastic properties and deformation mechanisms of actin filament networks crosslinked by filamins.
    Wang X; Zhu H; Lu Y; Wang Z; Kennedy D
    J Mech Behav Biomed Mater; 2020 Dec; 112():104075. PubMed ID: 32942229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelasticity of 3D actin networks dictated by the mechanochemical characteristics of cross-linkers.
    Wei X; Fang C; Gong B; Yao J; Qian J; Lin Y
    Soft Matter; 2021 Nov; 17(45):10177-10185. PubMed ID: 33646227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic interactions of filaments polymerizing against obstacles.
    Nazockdast E
    Cytoskeleton (Hoboken); 2019 Nov; 76(11-12):586-599. PubMed ID: 31600850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Averaged implicit hydrodynamic model of semiflexible filaments.
    Chandran PL; Mofrad MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031920. PubMed ID: 20365783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergent properties of composite semiflexible biopolymer networks.
    Jensen MH; Morris EJ; Goldman RD; Weitz DA
    Bioarchitecture; 2014; 4(4-5):138-43. PubMed ID: 25759912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress relaxation in F-actin solutions by severing.
    Arzash S; McCall PM; Feng J; Gardel ML; MacKintosh FC
    Soft Matter; 2019 Aug; 15(31):6300-6307. PubMed ID: 31342050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical and structural properties of in vitro neurofilament hydrogels.
    Rammensee S; Janmey PA; Bausch AR
    Eur Biophys J; 2007 Jul; 36(6):661-8. PubMed ID: 17340095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turnover versus treadmilling in actin network assembly and remodeling.
    Ni Q; Papoian GA
    Cytoskeleton (Hoboken); 2019 Nov; 76(11-12):562-570. PubMed ID: 31525282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical differences between ATP and ADP actin states: A molecular dynamics study.
    Mehrafrooz B; Shamloo A
    J Theor Biol; 2018 Jul; 448():94-103. PubMed ID: 29634959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro- and macrorheological properties of actin networks effectively cross-linked by depletion forces.
    Tharmann R; Claessens MM; Bausch AR
    Biophys J; 2006 Apr; 90(7):2622-7. PubMed ID: 16415061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.