These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33757195)

  • 1. Modelling and analysis of a stochastic nonautonomous predator-prey model with impulsive effects and nonlinear functional response.
    Zhang Y; Gao S; Chen S
    Math Biosci Eng; 2021 Jan; 18(2):1485-1512. PubMed ID: 33757195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extinction Analysis of Stochastic Predator-Prey System with Stage Structure and Crowley-Martin Functional Response.
    Xu C; Ren G; Yu Y
    Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33266966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the dynamics of one-prey-n-predator impulsive reaction-diffusion predator-prey system with ratio-dependent functional response.
    Liu Z; Zhang L; Bi P; Pang J; Li B; Fang C
    J Biol Dyn; 2018 Dec; 12(1):551-576. PubMed ID: 29962293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stochastic predator-prey model with Holling II increasing function in the predator.
    Huang Y; Shi W; Wei C; Zhang S
    J Biol Dyn; 2021 Dec; 15(1):1-18. PubMed ID: 33357105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of a stochastic modified Leslie-Gower predator-prey system with hunting cooperation.
    Li C; Shi P
    J Biol Dyn; 2024 Dec; 18(1):2366495. PubMed ID: 38899433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extinction and stationary distribution of stochastic predator-prey model with group defense behavior.
    Pei Y; Liu B; Qi H
    Math Biosci Eng; 2022 Sep; 19(12):13062-13078. PubMed ID: 36654035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of stochastic disease including predator-prey model with fear factor and Lévy jump.
    He X; Liu M; Xu X
    Math Biosci Eng; 2023 Jan; 20(2):1750-1773. PubMed ID: 36899507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of seasonally forced noisy environment on aquatic prey-predator model with water level fluctuations.
    Sarkar A; Sk N; Pal S
    Chaos; 2022 Sep; 32(9):093115. PubMed ID: 36182375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence and extinction of a modified Leslie-Gower Holling-type Ⅱ predator-prey stochastic model in polluted environments with impulsive toxicant input.
    Gao Y; Yao S
    Math Biosci Eng; 2021 Jun; 18(4):4894-4918. PubMed ID: 34198471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stationary distribution and global stability of stochastic predator-prey model with disease in prey population.
    Gokila C; Sambath M; Balachandran K; Ma YK
    J Biol Dyn; 2023 Dec; 17(1):2164803. PubMed ID: 36648149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival analysis of a stochastic predator-prey model with prey refuge and fear effect.
    Xia Y; Yuan S
    J Biol Dyn; 2020 Dec; 14(1):871-892. PubMed ID: 33269648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On hybrid stochastic population models with impulsive perturbations.
    Hu G; Tian K
    J Biol Dyn; 2019 Dec; 13(1):385-406. PubMed ID: 31072266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extinction and permanence of a two-prey one-predator system with impulsive effect.
    Zhang Y; Liu B; Chen L
    Math Med Biol; 2003 Dec; 20(4):309-25. PubMed ID: 14969382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal dynamics for impulsive eco-epidemiological model with Crowley-Martin type functional response.
    Huo H; Zhang F; Xiang H
    Math Biosci Eng; 2022 Aug; 19(12):12180-12211. PubMed ID: 36653992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global stability of the boundary solution of a nonautonomous predator-prey system with Beddington-DeAngelis functional response.
    Bai D; Li J; Zeng W
    J Biol Dyn; 2020 Dec; 14(1):421-437. PubMed ID: 32498616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical analysis of a modified Leslie-Gower Holling-type II predator-prey stochastic model in polluted environments with interspecific competition and impulsive toxicant input.
    Gao Y; Yao S
    J Biol Dyn; 2022 Dec; 16(1):840-858. PubMed ID: 36515706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species extinction and permanence of an impulsively controlled two-prey one-predator system with seasonal effects.
    Baek H
    Biosystems; 2009 Oct; 98(1):7-18. PubMed ID: 19591895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment.
    Roy J; Barman D; Alam S
    Biosystems; 2020 Nov; 197():104176. PubMed ID: 32628979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stochastic predator-prey model with two competitive preys and Ornstein-Uhlenbeck process.
    Liu Q
    J Biol Dyn; 2023 Dec; 17(1):2193211. PubMed ID: 36946715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic sensitivity analysis of noise-induced transitions in a predator-prey model with environmental toxins.
    Wu DM; Wang H; Yuan SL
    Math Biosci Eng; 2019 Mar; 16(4):2141-2153. PubMed ID: 31137203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.