These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Smith JD; Suresh S; Schlecht U; Wu M; Wagih O; Peltz G; Davis RW; Steinmetz LM; Parts L; St Onge RP Genome Biol; 2016 Mar; 17():45. PubMed ID: 26956608 [TBL] [Abstract][Full Text] [Related]
3. CRISPRi-seq for genome-wide fitness quantification in bacteria. de Bakker V; Liu X; Bravo AM; Veening JW Nat Protoc; 2022 Feb; 17(2):252-281. PubMed ID: 34997243 [TBL] [Abstract][Full Text] [Related]
4. CRISPRi-Driven Genetic Screening for Designing Novel Microbial Phenotypes. Kang M; Kim K; Cho BK Methods Mol Biol; 2024; 2760():117-132. PubMed ID: 38468085 [TBL] [Abstract][Full Text] [Related]
5. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors. Replogle JM; Bonnar JL; Pogson AN; Liem CR; Maier NK; Ding Y; Russell BJ; Wang X; Leng K; Guna A; Norman TM; Pak RA; Ramos DM; Ward ME; Gilbert LA; Kampmann M; Weissman JS; Jost M Elife; 2022 Dec; 11():. PubMed ID: 36576240 [TBL] [Abstract][Full Text] [Related]
6. Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae. Deaner M; Alper HS FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31665284 [TBL] [Abstract][Full Text] [Related]
7. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm. Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939 [TBL] [Abstract][Full Text] [Related]
8. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040 [TBL] [Abstract][Full Text] [Related]
9. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. Guna A; Page KR; Replogle JM; Esantsi TK; Wang ML; Weissman JS; Voorhees RM BMC Genomics; 2023 Oct; 24(1):651. PubMed ID: 37904134 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Koike-Yusa H; Li Y; Tan EP; Velasco-Herrera Mdel C; Yusa K Nat Biotechnol; 2014 Mar; 32(3):267-73. PubMed ID: 24535568 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional Knockdown in Pneumococci Using CRISPR Interference. Kjos M Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208 [TBL] [Abstract][Full Text] [Related]
12. Genome-scale CRISPR pooled screens. Sanjana NE Anal Biochem; 2017 Sep; 532():95-99. PubMed ID: 27261176 [TBL] [Abstract][Full Text] [Related]
13. CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens. Daley TP; Lin Z; Lin X; Liu Y; Wong WH; Qi LS Genome Biol; 2018 Oct; 19(1):159. PubMed ID: 30296940 [TBL] [Abstract][Full Text] [Related]
15. An inducible CRISPR interference library for genetic interrogation of Saccharomyces cerevisiae biology. Momen-Roknabadi A; Oikonomou P; Zegans M; Tavazoie S Commun Biol; 2020 Nov; 3(1):723. PubMed ID: 33247197 [TBL] [Abstract][Full Text] [Related]
16. Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model. Li R; Xia X; Wang X; Sun X; Dai Z; Huo D; Zheng H; Xiong H; He A; Wu X PLoS Biol; 2020 Nov; 18(11):e3000749. PubMed ID: 33253175 [TBL] [Abstract][Full Text] [Related]