BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33757516)

  • 21. Unusual evolutionary mechanisms to escape effector-triggered immunity in the fungal phytopathogen Leptosphaeria maculans.
    Plissonneau C; Blaise F; Ollivier B; Leflon M; Carpezat J; Rouxel T; Balesdent MH
    Mol Ecol; 2017 Apr; 26(7):2183-2198. PubMed ID: 28160497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa.
    Balesdent MH; Fudal I; Ollivier B; Bally P; Grandaubert J; Eber F; Chèvre AM; Leflon M; Rouxel T
    New Phytol; 2013 May; 198(3):887-898. PubMed ID: 23406519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus.
    Sašek V; Nováková M; Jindřichová B; Bóka K; Valentová O; Burketová L
    Mol Plant Microbe Interact; 2012 Sep; 25(9):1238-50. PubMed ID: 22624662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leptosphaeria maculans AvrLm9: a new player in the game of hide and seek with AvrLm4-7.
    Ghanbarnia K; Ma L; Larkan NJ; Haddadi P; Fernando WGD; Borhan MH
    Mol Plant Pathol; 2018 Jul; 19(7):1754-1764. PubMed ID: 29330918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Findings Unravel Genes and Genetic Factors Underlying
    Cantila AY; Saad NSM; Amas JC; Edwards D; Batley J
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissecting R gene and host genetic background effect on the Brassica napus defense response to Leptosphaeria maculans.
    Haddadi P; Larkan NJ; Borhan MH
    Sci Rep; 2019 May; 9(1):6947. PubMed ID: 31061421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans.
    Gout L; Fudal I; Kuhn ML; Blaise F; Eckert M; Cattolico L; Balesdent MH; Rouxel T
    Mol Microbiol; 2006 Apr; 60(1):67-80. PubMed ID: 16556221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sit4-Associated Protein is Required for Pathogenicity of Leptosphaeria maculans on Brassica napus.
    Urquhart AS; Idnurm A
    Curr Microbiol; 2017 Dec; 74(12):1438-1446. PubMed ID: 28840344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does fungal infection increase the palatability of oilseed rape to insects?
    Jindřichová B; Rubil N; Rezek J; Ourry M; Hauser TP; Burketová L
    Pest Manag Sci; 2024 May; 80(5):2480-2494. PubMed ID: 38436531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pathways of infection of Brassica napus roots by Leptosphaeria maculans.
    Sprague SJ; Watt M; Kirkegaard JA; Howlett BJ
    New Phytol; 2007; 176(1):211-222. PubMed ID: 17696980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymorphism of Avirulence Genes and Adaptation to
    Gautier A; Laval V; Faure S; Rouxel T; Balesdent MH
    Phytopathology; 2023 Jul; 113(7):1222-1232. PubMed ID: 36802873
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Ma JQ; Wei LJ; Lin A; Zhang C; Sun W; Yang B; Lu K; Li JN
    Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30979089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a specific marker for detection of a functional AvrLm9 allele and validating the interaction between AvrLm7 and AvrLm9 in Leptosphaeria maculans.
    Liu F; Zou Z; Huang S; Parks P; Fernando WGD
    Mol Biol Rep; 2020 Sep; 47(9):7115-7123. PubMed ID: 32897523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constitutive expression of transcription factor SirZ blocks pathogenicity in Leptosphaeria maculans independently of sirodesmin production.
    Urquhart AS; Elliott CE; Zeng W; Idnurm A
    PLoS One; 2021; 16(6):e0252333. PubMed ID: 34111151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative Transcriptomic Analysis of Virulence Factors in
    Sonah H; Zhang X; Deshmukh RK; Borhan MH; Fernando WG; Bélanger RR
    Front Plant Sci; 2016; 7():1784. PubMed ID: 27990146
    [No Abstract]   [Full Text] [Related]  

  • 37. Transcriptome Analysis of
    Becker MG; Haddadi P; Wan J; Adam L; Walker P; Larkan NJ; Daayf F; Borhan MH; Belmonte MF
    Mol Plant Microbe Interact; 2019 Aug; 32(8):1001-1012. PubMed ID: 30938576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change.
    Parlange F; Daverdin G; Fudal I; Kuhn ML; Balesdent MH; Blaise F; Grezes-Besset B; Rouxel T
    Mol Microbiol; 2009 Feb; 71(4):851-63. PubMed ID: 19170874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oilseed rape (Brassica napus) resistance to growth of Leptosphaeria maculans in leaves of young plants contributes to quantitative resistance in stems of adult plants.
    Huang YJ; Paillard S; Kumar V; King GJ; Fitt BDL; Delourme R
    PLoS One; 2019; 14(9):e0222540. PubMed ID: 31513677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From model to crop plant-pathogen interactions: cloning of the first resistance gene to Leptosphaeria maculans in Brassica napus.
    Rouxel T; Balesdent MH
    New Phytol; 2013 Jan; 197(2):356-358. PubMed ID: 23253328
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.