BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 33757554)

  • 1. Establishment of an in vitro model for analyzing mitochondrial ultrastructure in PRKN-mutated patient iPSC-derived dopaminergic neurons.
    Yokota M; Kakuta S; Shiga T; Ishikawa KI; Okano H; Hattori N; Akamatsu W; Koike M
    Mol Brain; 2021 Mar; 14(1):58. PubMed ID: 33757554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced ER-mitochondrial contact sites and mitochondrial Ca
    Yokota M; Yoshino Y; Hosoi M; Hashimoto R; Kakuta S; Shiga T; Ishikawa KI; Okano H; Hattori N; Akamatsu W; Koike M
    Front Cell Dev Biol; 2023; 11():1171440. PubMed ID: 37745304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-mediated generation of a tyrosine hydroxylase reporter iPSC line for live imaging and isolation of dopaminergic neurons.
    Calatayud C; Carola G; Fernández-Carasa I; Valtorta M; Jiménez-Delgado S; Díaz M; Soriano-Fradera J; Cappelletti G; García-Sancho J; Raya Á; Consiglio A
    Sci Rep; 2019 May; 9(1):6811. PubMed ID: 31048719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative switch drives mitophagy defects in dopaminergic parkin mutant patient neurons.
    Schwartzentruber A; Boschian C; Lopes FM; Myszczynska MA; New EJ; Beyrath J; Smeitink J; Ferraiuolo L; Mortiboys H
    Sci Rep; 2020 Sep; 10(1):15485. PubMed ID: 32968089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating Neural Stem Cells from iPSCs with Dopaminergic Neurons Reporter Gene.
    Hong H; Daadi MM
    Methods Mol Biol; 2019; 1919():119-128. PubMed ID: 30656625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines.
    Shaltouki A; Sivapatham R; Pei Y; Gerencser AA; Momčilović O; Rao MS; Zeng X
    Stem Cell Reports; 2015 May; 4(5):847-59. PubMed ID: 25843045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of homozygous PRKN, PINK1 and double PINK1/PRKN knockout cell lines from healthy induced pluripotent stem cells using CRISPR/Cas9 editing.
    Chen CX; You Z; Abdian N; Sirois J; Shlaifer I; Tabatabaei M; Boivin MN; Gaborieau L; Karamchandani J; Beitel LK; Fon EA; Durcan TM
    Stem Cell Res; 2022 Jul; 62():102806. PubMed ID: 35561458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation.
    Chung SY; Kishinevsky S; Mazzulli JR; Graziotto J; Mrejeru A; Mosharov EV; Puspita L; Valiulahi P; Sulzer D; Milner TA; Taldone T; Krainc D; Studer L; Shim JW
    Stem Cell Reports; 2016 Oct; 7(4):664-677. PubMed ID: 27641647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria-Endoplasmic Reticulum Contact Sites Dynamics and Calcium Homeostasis Are Differentially Disrupted in PINK1-PD or PRKN-PD Neurons.
    Grossmann D; Malburg N; Glaß H; Weeren V; Sondermann V; Pfeiffer JF; Petters J; Lukas J; Seibler P; Klein C; Grünewald A; Hermann A
    Mov Disord; 2023 Oct; 38(10):1822-1836. PubMed ID: 37449534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations.
    Momcilovic O; Sivapatham R; Oron TR; Meyer M; Mooney S; Rao MS; Zeng X
    PLoS One; 2016; 11(5):e0154890. PubMed ID: 27191603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism.
    Okarmus J; Havelund JF; Ryding M; Schmidt SI; Bogetofte H; Heon-Roberts R; Wade-Martins R; Cowley SA; Ryan BJ; Færgeman NJ; Hyttel P; Meyer M
    Stem Cell Reports; 2021 Jun; 16(6):1510-1526. PubMed ID: 34048689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons.
    Überbacher C; Obergasteiger J; Volta M; Venezia S; Müller S; Pesce I; Pizzi S; Lamonaca G; Picard A; Cattelan G; Malpeli G; Zoli M; Beccano-Kelly D; Flynn R; Wade-Martins R; Pramstaller PP; Hicks AA; Cowley SA; Corti C
    Stem Cell Res; 2019 Dec; 41():101656. PubMed ID: 31733438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson's disease-like motor dysfunction.
    Suda Y; Kuzumaki N; Sone T; Narita M; Tanaka K; Hamada Y; Iwasawa C; Shibasaki M; Maekawa A; Matsuo M; Akamatsu W; Hattori N; Okano H; Narita M
    Mol Brain; 2018 Feb; 11(1):6. PubMed ID: 29458391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of three induced pluripotent stem cell lines from a Parkinson's disease patient with mutant PARKIN (p. C253Y).
    Tariq M; Liu H; Ibañez DP; Li Y; Chen S; Jiang M; Fan W; Zhao P; Luo Z; Wang D; Kanwal S
    Stem Cell Res; 2020 May; 45():101822. PubMed ID: 32387897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological characterisation of human iPS-derived dopaminergic neurons.
    Hartfield EM; Yamasaki-Mann M; Ribeiro Fernandes HJ; Vowles J; James WS; Cowley SA; Wade-Martins R
    PLoS One; 2014; 9(2):e87388. PubMed ID: 24586273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human iPSCs derived astrocytes rescue rotenone-induced mitochondrial dysfunction and dopaminergic neurodegeneration in vitro by donating functional mitochondria.
    Cheng XY; Biswas S; Li J; Mao CJ; Chechneva O; Chen J; Li K; Li J; Zhang JR; Liu CF; Deng WB
    Transl Neurodegener; 2020 Apr; 9(1):13. PubMed ID: 32345341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue.
    Imaizumi Y; Okada Y; Akamatsu W; Koike M; Kuzumaki N; Hayakawa H; Nihira T; Kobayashi T; Ohyama M; Sato S; Takanashi M; Funayama M; Hirayama A; Soga T; Hishiki T; Suematsu M; Yagi T; Ito D; Kosakai A; Hayashi K; Shouji M; Nakanishi A; Suzuki N; Mizuno Y; Mizushima N; Amagai M; Uchiyama Y; Mochizuki H; Hattori N; Okano H
    Mol Brain; 2012 Oct; 5():35. PubMed ID: 23039195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.
    Perier C; Bender A; García-Arumí E; Melià MJ; Bové J; Laub C; Klopstock T; Elstner M; Mounsey RB; Teismann P; Prolla T; Andreu AL; Vila M
    Brain; 2013 Aug; 136(Pt 8):2369-78. PubMed ID: 23884809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations.
    Kano M; Takanashi M; Oyama G; Yoritaka A; Hatano T; Shiba-Fukushima K; Nagai M; Nishiyama K; Hasegawa K; Inoshita T; Ishikawa KI; Akamatsu W; Imai Y; Bolognin S; Schwamborn JC; Hattori N
    NPJ Parkinsons Dis; 2020 Nov; 6(1):33. PubMed ID: 33298969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkin mutation decreases neurite complexity and maturation in neurons derived from human fibroblasts.
    Pu J; Gao T; Zheng R; Fang Y; Ruan Y; Jin C; Shen T; Tian J; Zhang B
    Brain Res Bull; 2020 Jun; 159():9-15. PubMed ID: 32156628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.