These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 33757970)

  • 1. Obesity-Dependent Adipokine Chemerin Suppresses Fatty Acid Oxidation to Confer Ferroptosis Resistance.
    Tan SK; Mahmud I; Fontanesi F; Puchowicz M; Neumann CKA; Griswold AJ; Patel R; Dispagna M; Ahmed HH; Gonzalgo ML; Brown JM; Garrett TJ; Welford SM
    Cancer Discov; 2021 Aug; 11(8):2072-2093. PubMed ID: 33757970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemerin Tips the Scales in ccRCC to Evade Ferroptosis.
    Reznik E; Jiang H; Hakimi AA
    Cancer Discov; 2021 Aug; 11(8):1879-1880. PubMed ID: 34344758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Modulation of Clear-cell Renal Cell Carcinoma with Dichloroacetate, an Inhibitor of Pyruvate Dehydrogenase Kinase.
    Kinnaird A; Dromparis P; Saleme B; Gurtu V; Watson K; Paulin R; Zervopoulos S; Stenson T; Sutendra G; Pink DB; Carmine-Simmen K; Moore R; Lewis JD; Michelakis ED
    Eur Urol; 2016 Apr; 69(4):734-744. PubMed ID: 26433571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma.
    Miess H; Dankworth B; Gouw AM; Rosenfeldt M; Schmitz W; Jiang M; Saunders B; Howell M; Downward J; Felsher DW; Peck B; Schulze A
    Oncogene; 2018 Oct; 37(40):5435-5450. PubMed ID: 29872221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPR1 and CMKLR1 Control Lipid Metabolism to Support the Development of Clear Cell Renal Cell Carcinoma.
    Wang D; Mahmud I; Thakur VS; Tan SK; Isom DG; Lombard DB; Gonzalgo ML; Kryvenko ON; Lorenzi PL; Tcheuyap VT; Brugarolas J; Welford SM
    Cancer Res; 2024 Jul; 84(13):2141-2154. PubMed ID: 38640229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty Acid Oxidation Mediated by Malonyl-CoA Decarboxylase Represses Renal Cell Carcinoma Progression.
    Zhou L; Luo Y; Liu Y; Zeng Y; Tong J; Li M; Hou Y; Du K; Qi Y; Pan W; Liu Y; Wang R; Tian F; Gu C; Chen K
    Cancer Res; 2023 Dec; 83(23):3920-3939. PubMed ID: 37729394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid in Renal Carcinoma: Queen Bee to Target?
    Tan SK; Welford SM
    Trends Cancer; 2020 Jun; 6(6):448-450. PubMed ID: 32459999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HO-1 Contributes to Luteolin-Triggered Ferroptosis in Clear Cell Renal Cell Carcinoma via Increasing the Labile Iron Pool and Promoting Lipid Peroxidation.
    Han S; Lin F; Qi Y; Liu C; Zhou L; Xia Y; Chen K; Xing J; Liu Z; Yu W; Zhang Y; Zhou X; Rao T; Cheng F
    Oxid Med Cell Longev; 2022; 2022():3846217. PubMed ID: 35656025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemerin causes lipid metabolic imbalance and induces passive lipid accumulation in human hepatoma cell line via the receptor GPR1.
    Zhu L; Huang J; Wang Y; Yang Z; Chen X
    Life Sci; 2021 Aug; 278():119530. PubMed ID: 33887347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E2F1 promotes proliferation and metastasis of clear cell renal cell carcinoma via activation of SREBP1-dependent fatty acid biosynthesis.
    Shen D; Gao Y; Huang Q; Xuan Y; Yao Y; Gu L; Huang Y; Zhang Y; Li P; Fan Y; Tang L; Du S; Wu S; Wang H; Wang C; Gong H; Pang Y; Ma X; Wang B; Zhang X
    Cancer Lett; 2021 Aug; 514():48-62. PubMed ID: 34019961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACSL3 regulates lipid droplet biogenesis and ferroptosis sensitivity in clear cell renal cell carcinoma.
    Klasson TD; LaGory EL; Zhao H; Huynh SK; Papandreou I; Moon EJ; Giaccia AJ
    Cancer Metab; 2022 Oct; 10(1):14. PubMed ID: 36192773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism.
    Du W; Zhang L; Brett-Morris A; Aguila B; Kerner J; Hoppel CL; Puchowicz M; Serra D; Herrero L; Rini BI; Campbell S; Welford SM
    Nat Commun; 2017 Nov; 8(1):1769. PubMed ID: 29176561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the transcription factor receptor LXR to treat clear cell renal cell carcinoma: agonist or inverse agonist?
    Wu G; Wang Q; Xu Y; Li J; Zhang H; Qi G; Xia Q
    Cell Death Dis; 2019 May; 10(6):416. PubMed ID: 31138790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor Microenvironment-Responsive Nanodrug for Clear-Cell Renal Cell Carcinoma Therapy via Triggering Waterfall-Like Cascade Ferroptosis.
    Ni W; Li Y; Liang L; Yang S; Zhan M; Lu C; Lu L; Wen L
    J Biomed Nanotechnol; 2022 Feb; 18(2):327-342. PubMed ID: 35484753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid metabolism reprogramming in ccRCC: mechanisms and potential targets.
    Tan SK; Hougen HY; Merchan JR; Gonzalgo ML; Welford SM
    Nat Rev Urol; 2023 Jan; 20(1):48-60. PubMed ID: 36192502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolyl hydroxylase 2 dependent and Von-Hippel-Lindau independent degradation of Hypoxia-inducible factor 1 and 2 alpha by selenium in clear cell renal cell carcinoma leads to tumor growth inhibition.
    Chintala S; Najrana T; Toth K; Cao S; Durrani FA; Pili R; Rustum YM
    BMC Cancer; 2012 Jul; 12():293. PubMed ID: 22804960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemotherapy-mediated p53-dependent DNA damage response in clear cell renal cell carcinoma: role of the mTORC1/2 and hypoxia-inducible factor pathways.
    Selvarajah J; Nathawat K; Moumen A; Ashcroft M; Carroll VA
    Cell Death Dis; 2013 Oct; 4(10):e865. PubMed ID: 24136229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting lipid biosynthesis on the basis of conventional treatments for clear cell renal cell carcinoma: A promising therapeutic approach.
    Guo T; Zhang X; Chen S; Wang X; Wang X
    Life Sci; 2024 Jan; 336():122329. PubMed ID: 38052321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia-inducible factor (HIF)-prolyl hydroxylase 3 (PHD3) maintains high
    Miikkulainen P; Högel H; Seyednasrollah F; Rantanen K; Elo LL; Jaakkola PM
    J Biol Chem; 2019 Mar; 294(10):3760-3771. PubMed ID: 30617181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma.
    Huang D; Ding Y; Li Y; Luo WM; Zhang ZF; Snider J; Vandenbeldt K; Qian CN; Teh BT
    Cancer Res; 2010 Feb; 70(3):1053-62. PubMed ID: 20103629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.