These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 33758180)

  • 1. Robust and flexible platform for directed evolution of yeast genetic switches.
    Tominaga M; Nozaki K; Umeno D; Ishii J; Kondo A
    Nat Commun; 2021 Mar; 12(1):1846. PubMed ID: 33758180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide kinase-based selection system for genetic switches.
    Ike K; Umeno D
    Methods Mol Biol; 2014; 1111():141-52. PubMed ID: 24549617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Evolution of the Stringency of the LuxR
    Kimura Y; Kawai-Noma S; Saito K; Umeno D
    ACS Synth Biol; 2020 Mar; 9(3):567-575. PubMed ID: 31999435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic mammalian trigger-controlled bipartite transcription factors.
    Folcher M; Xie M; Spinnler A; Fussenegger M
    Nucleic Acids Res; 2013 Jul; 41(13):e134. PubMed ID: 23685433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution of transcriptional switches using dual-selector systems.
    Kimura Y; Umeno D
    Methods Enzymol; 2020; 644():191-207. PubMed ID: 32943145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Orthogonal Transcriptional Switches Derived from Tet Repressor Homologues for Saccharomyces cerevisiae Regulated by 2,4-Diacetylphloroglucinol and Other Ligands.
    Ikushima S; Boeke JD
    ACS Synth Biol; 2017 Mar; 6(3):497-506. PubMed ID: 28005347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous.
    Verwaal R; Wang J; Meijnen JP; Visser H; Sandmann G; van den Berg JA; van Ooyen AJ
    Appl Environ Microbiol; 2007 Jul; 73(13):4342-50. PubMed ID: 17496128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and liquid-based selection of genetic switches using nucleoside kinase fused with aminoglycoside phosphotransferase.
    Tominaga M; Ike K; Kawai-Noma S; Saito K; Umeno D
    PLoS One; 2015; 10(3):e0120243. PubMed ID: 25790096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro DNA SCRaMbLE.
    Wu Y; Zhu RY; Mitchell LA; Ma L; Liu R; Zhao M; Jia B; Xu H; Li YX; Yang ZM; Ma Y; Li X; Liu H; Liu D; Xiao WH; Zhou X; Li BZ; Yuan YJ; Boeke JD
    Nat Commun; 2018 May; 9(1):1935. PubMed ID: 29789594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the logical properties of a genetic AND gate.
    Sayut DJ; Niu Y; Sun L
    Methods Mol Biol; 2011; 743():175-84. PubMed ID: 21553191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNAi-Assisted Genome Evolution (RAGE) in Saccharomyces cerevisiae.
    Si T; Zhao H
    Methods Mol Biol; 2016; 1470():183-98. PubMed ID: 27581294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Diversification of BetI-Based Transcriptional Switches for the Control of Biosynthetic Pathways and Genetic Circuits.
    Saeki K; Tominaga M; Kawai-Noma S; Saito K; Umeno D
    ACS Synth Biol; 2016 Nov; 5(11):1201-1210. PubMed ID: 26991155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nucleoside kinase as a dual selector for genetic switches and circuits.
    Tashiro Y; Fukutomi H; Terakubo K; Saito K; Umeno D
    Nucleic Acids Res; 2011 Feb; 39(3):e12. PubMed ID: 21062820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design.
    Dymond JS; Richardson SM; Coombes CE; Babatz T; Muller H; Annaluru N; Blake WJ; Schwerzmann JW; Dai J; Lindstrom DL; Boeke AC; Gottschling DE; Chandrasegaran S; Bader JS; Boeke JD
    Nature; 2011 Sep; 477(7365):471-6. PubMed ID: 21918511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development and characterization of synthetic minimal yeast promoters.
    Redden H; Alper HS
    Nat Commun; 2015 Jul; 6():7810. PubMed ID: 26183606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of Vibrio fischeri LuxR signal sensitivity.
    Kimura Y; Tashiro Y; Saito K; Kawai-Noma S; Umeno D
    J Biosci Bioeng; 2016 Nov; 122(5):533-538. PubMed ID: 27222380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a synthetic yeast genome.
    Richardson SM; Mitchell LA; Stracquadanio G; Yang K; Dymond JS; DiCarlo JE; Lee D; Huang CL; Chandrasegaran S; Cai Y; Boeke JD; Bader JS
    Science; 2017 Mar; 355(6329):1040-1044. PubMed ID: 28280199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression.
    Pothoulakis G; Ellis T
    PLoS One; 2018; 13(3):e0194588. PubMed ID: 29566038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution-guided engineering of small-molecule biosensors.
    Snoek T; Chaberski EK; Ambri F; Kol S; Bjørn SP; Pang B; Barajas JF; Welner DH; Jensen MK; Keasling JD
    Nucleic Acids Res; 2020 Jan; 48(1):e3. PubMed ID: 31777933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic Biology of Yeast.
    Liu Z; Zhang Y; Nielsen J
    Biochemistry; 2019 Mar; 58(11):1511-1520. PubMed ID: 30618248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.