These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 33758180)

  • 21. Synthetic Biology of Yeast.
    Liu Z; Zhang Y; Nielsen J
    Biochemistry; 2019 Mar; 58(11):1511-1520. PubMed ID: 30618248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods.
    Liu W; Luo Z; Wang Y; Pham NT; Tuck L; Pérez-Pi I; Liu L; Shen Y; French C; Auer M; Marles-Wright J; Dai J; Cai Y
    Nat Commun; 2018 May; 9(1):1936. PubMed ID: 29789543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rosetta comparative modeling for library design: Engineering alternative inducer specificity in a transcription factor.
    Jha RK; Chakraborti S; Kern TL; Fox DT; Strauss CE
    Proteins; 2015 Jul; 83(7):1327-40. PubMed ID: 25974100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae.
    Yamano S; Ishii T; Nakagawa M; Ikenaga H; Misawa N
    Biosci Biotechnol Biochem; 1994 Jun; 58(6):1112-4. PubMed ID: 7765036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directed evolution of promoters and tandem gene arrays for customizing RNA synthesis rates and regulation.
    Tyo KE; Nevoigt E; Stephanopoulos G
    Methods Enzymol; 2011; 497():135-55. PubMed ID: 21601085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SCRaMbLE-in: A Fast and Efficient Method to Diversify and Improve the Yields of Heterologous Pathways in Synthetic Yeast.
    Swidah R; Auxillos J; Liu W; Jones S; Chan TF; Dai J; Cai Y
    Methods Mol Biol; 2020; 2205():305-327. PubMed ID: 32809206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae.
    Leavitt JM; Tong A; Tong J; Pattie J; Alper HS
    Biotechnol J; 2016 Jul; 11(7):866-76. PubMed ID: 27152757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of translation initiation sequences using in vitro yeast ribosome display.
    Gan R; Jewett MC
    Biotechnol Bioeng; 2016 Aug; 113(8):1777-86. PubMed ID: 26757179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance.
    Ukibe K; Hashida K; Yoshida N; Takagi H
    Appl Environ Microbiol; 2009 Nov; 75(22):7205-11. PubMed ID: 19801484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthetic conversion of a graded receptor signal into a tunable, reversible switch.
    Palani S; Sarkar CA
    Mol Syst Biol; 2011 Mar; 7():480. PubMed ID: 21451590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation by tetracycline of gene expression in Saccharomyces cerevisiae.
    Nagahashi S; Nakayama H; Hamada K; Yang H; Arisawa M; Kitada K
    Mol Gen Genet; 1997 Jul; 255(4):372-5. PubMed ID: 9267432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering of ribozyme-based aminoglycoside switches of gene expression by in vivo genetic selection in Saccharomyces cerevisiae.
    Klauser B; Rehm C; Summerer D; Hartig JS
    Methods Enzymol; 2015; 550():301-20. PubMed ID: 25605392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient platform for genetic selection and screening of gene switches in Escherichia coli.
    Muranaka N; Sharma V; Nomura Y; Yokobayashi Y
    Nucleic Acids Res; 2009 Apr; 37(5):e39. PubMed ID: 19190095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening.
    Gowers GF; Chee SM; Bell D; Suckling L; Kern M; Tew D; McClymont DW; Ellis T
    Nat Commun; 2020 Feb; 11(1):868. PubMed ID: 32054834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing with living systems in the synthetic yeast project.
    Szymanski E; Calvert J
    Nat Commun; 2018 Jul; 9(1):2950. PubMed ID: 30054478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation.
    Ahn J; Park KM; Lee H; Son YJ; Choi ES
    FEMS Yeast Res; 2013 Feb; 13(1):140-2. PubMed ID: 23131005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthetic biology: a yeast for all reasons.
    Enyeart PJ; Ellington AD
    Nature; 2011 Sep; 477(7365):413-4. PubMed ID: 21938060
    [No Abstract]   [Full Text] [Related]  

  • 38. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch.
    Michener JK; Smolke CD
    Metab Eng; 2012 Jul; 14(4):306-16. PubMed ID: 22554528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computational method for automated characterization of genetic components.
    Yordanov B; Dalchau N; Grant PK; Pedersen M; Emmott S; Haseloff J; Phillips A
    ACS Synth Biol; 2014 Aug; 3(8):578-88. PubMed ID: 24628037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directed evolution: an evolving and enabling synthetic biology tool.
    Cobb RE; Si T; Zhao H
    Curr Opin Chem Biol; 2012 Aug; 16(3-4):285-91. PubMed ID: 22673064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.