These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33758251)

  • 1. Neural encoding of voice pitch and formant structure at birth as revealed by frequency-following responses.
    Arenillas-Alcón S; Costa-Faidella J; Ribas-Prats T; Gómez-Roig MD; Escera C
    Sci Rep; 2021 Mar; 11(1):6660. PubMed ID: 33758251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcortical neural representation to Mandarin pitch contours in American and Chinese newborns.
    Jeng FC; Lin CD; Wang TC
    J Acoust Soc Am; 2016 Jun; 139(6):EL190. PubMed ID: 27369171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation of voice pitch in discharge patterns of auditory-nerve fibers.
    Miller MI; Sachs MB
    Hear Res; 1984 Jun; 14(3):257-79. PubMed ID: 6480513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-linguistic comparison of frequency-following responses to voice pitch in American and Chinese neonates and adults.
    Jeng FC; Hu J; Dickman B; Montgomery-Reagan K; Tong M; Wu G; Lin CD
    Ear Hear; 2011; 32(6):699-707. PubMed ID: 21543983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of two algorithms for detecting human frequency-following responses to voice pitch.
    Jeng FC; Hu J; Dickman B; Lin CY; Lin CD; Wang CY; Chung HK; Li X
    Int J Audiol; 2011 Jan; 50(1):14-26. PubMed ID: 21047294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech enhancement for listeners with hearing loss based on a model for vowel coding in the auditory midbrain.
    Rao A; Carney LH
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2081-91. PubMed ID: 24686228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prenatal daily musical exposure is associated with enhanced neural representation of speech fundamental frequency: Evidence from neonatal frequency-following responses.
    Arenillas-Alcón S; Ribas-Prats T; Puertollano M; Mondéjar-Segovia A; Gómez-Roig MD; Costa-Faidella J; Escera C
    Dev Sci; 2023 Sep; 26(5):e13362. PubMed ID: 36550689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to bilingual or monolingual maternal speech during pregnancy affects the neurophysiological encoding of speech sounds in neonates differently.
    Gorina-Careta N; Arenillas-Alcón S; Puertollano M; Mondéjar-Segovia A; Ijjou-Kadiri S; Costa-Faidella J; Gómez-Roig MD; Escera C
    Front Hum Neurosci; 2024; 18():1379660. PubMed ID: 38841122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early maturation of frequency-following responses to voice pitch in infants with normal hearing.
    Jeng FC; Schnabel EA; Dickman BM; Hu J; Li X; Lin CD; Chung HK
    Percept Mot Skills; 2010 Dec; 111(3):765-84. PubMed ID: 21319616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensorimotor control of vocal pitch and formant frequencies in Parkinson's disease.
    Mollaei F; Shiller DM; Baum SR; Gracco VL
    Brain Res; 2016 Sep; 1646():269-277. PubMed ID: 27288701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal trajectories of the neural encoding mechanisms of speech-sound features during the first year of life.
    Puertollano M; Ribas-Prats T; Gorina-Careta N; Ijjou-Kadiri S; Arenillas-Alcón S; Mondéjar-Segovia A; Dolores Gómez-Roig M; Escera C
    Brain Lang; 2024 Sep; 258():105474. PubMed ID: 39326253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamental frequency-dependent changes in vowel-evoked envelope following responses.
    Easwar V; Boothalingam S; Flaherty R
    Hear Res; 2021 Sep; 408():108297. PubMed ID: 34229221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromagnetic correlates of voice pitch, vowel type, and speaker size in auditory cortex.
    Andermann M; Patterson RD; Vogt C; Winterstetter L; Rupp A
    Neuroimage; 2017 Sep; 158():79-89. PubMed ID: 28669914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human frequency-following response: representation of pitch contours in Chinese tones.
    Krishnan A; Xu Y; Gandour JT; Cariani PA
    Hear Res; 2004 Mar; 189(1-2):1-12. PubMed ID: 14987747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Frequency Following Response: Neural Representation of Envelope and Temporal Fine Structure in Listeners with Normal Hearing and Sensorineural Hearing Loss.
    Ananthakrishnan S; Krishnan A; Bartlett E
    Ear Hear; 2016; 37(2):e91-e103. PubMed ID: 26583482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioelectrical brain effects of one's own voice identification in pitch of voice auditory feedback.
    Korzyukov O; Bronder A; Lee Y; Patel S; Larson CR
    Neuropsychologia; 2017 Jul; 101():106-114. PubMed ID: 28461225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exponential Modeling of Frequency-Following Responses in American Neonates and Adults.
    Jeng FC; Nance B; Montgomery-Reagan K; Lin CD
    J Am Acad Audiol; 2018 Feb; 29(2):125-134. PubMed ID: 29401060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formant-invariant voice and pitch representations are pre-attentively formed from constantly varying speech and non-speech stimuli.
    Di Dona G; Scaltritti M; Sulpizio S
    Eur J Neurosci; 2022 Aug; 56(3):4086-4106. PubMed ID: 35673798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental Trajectory of the Frequency-Following Response During the First 6 Months of Life.
    Ribas-Prats T; Cordero G; Lip-Sosa DL; Arenillas-Alcón S; Costa-Faidella J; Gómez-Roig MD; Escera C
    J Speech Lang Hear Res; 2023 Dec; 66(12):4785-4800. PubMed ID: 37944057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.