These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33758487)

  • 1. Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues.
    Knoll F; Hammernik K; Zhang C; Moeller S; Pock T; Sodickson DK; Akçakaya M
    IEEE Signal Process Mag; 2020 Jan; 37(1):128-140. PubMed ID: 33758487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review and experimental evaluation of deep learning methods for MRI reconstruction.
    Pal A; Rathi Y
    J Mach Learn Biomed Imaging; 2022 Mar; 1():. PubMed ID: 35722657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning.
    Zhang C; Moeller S; Demirel OB; Uğurbil K; Akçakaya M
    Neuroimage; 2022 Aug; 256():119248. PubMed ID: 35487456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning in Magnetic Resonance Imaging: Image reconstruction.
    Montalt-Tordera J; Muthurangu V; Hauptmann A; Steeden JA
    Phys Med; 2021 Mar; 83():79-87. PubMed ID: 33721701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging.
    Hammernik K; Küstner T; Yaman B; Huang Z; Rueckert D; Knoll F; Akçakaya M
    IEEE Signal Process Mag; 2023 Jan; 40(1):98-114. PubMed ID: 37304755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Compressed-Sensing to Artificial Intelligence-Based Cardiac MRI Reconstruction.
    Bustin A; Fuin N; Botnar RM; Prieto C
    Front Cardiovasc Med; 2020; 7():17. PubMed ID: 32158767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. k -Space Deep Learning for Accelerated MRI.
    Han Y; Sunwoo L; Ye JC
    IEEE Trans Med Imaging; 2020 Feb; 39(2):377-386. PubMed ID: 31283473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. k-Space deep learning for reference-free EPI ghost correction.
    Lee J; Han Y; Ryu JK; Park JY; Ye JC
    Magn Reson Med; 2019 Dec; 82(6):2299-2313. PubMed ID: 31321809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Networks.
    Liang D; Cheng J; Ke Z; Ying L
    IEEE Signal Process Mag; 2020 Jan; 37(1):141-151. PubMed ID: 33746470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning in magnetic resonance image reconstruction.
    Chandra SS; Bran Lorenzana M; Liu X; Liu S; Bollmann S; Crozier S
    J Med Imaging Radiat Oncol; 2021 Aug; 65(5):564-577. PubMed ID: 34254448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An unsupervised deep learning method for multi-coil cine MRI.
    Ke Z; Cheng J; Ying L; Zheng H; Zhu Y; Liang D
    Phys Med Biol; 2020 Dec; 65(23):235041. PubMed ID: 33263316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-band- and in-plane-accelerated diffusion MRI enabled by model-based deep learning in q-space and its extension to learning in the spherical harmonic domain.
    Mani M; Yang B; Bathla G; Magnotta V; Jacob M
    Magn Reson Med; 2022 Apr; 87(4):1799-1815. PubMed ID: 34825729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks.
    Lee D; Yoo J; Tak S; Ye JC
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):1985-1995. PubMed ID: 29993390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction.
    Oh C; Chung JY; Han Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI.
    Arefeen Y; Beker O; Cho J; Yu H; Adalsteinsson E; Bilgic B
    Magn Reson Med; 2022 Feb; 87(2):764-780. PubMed ID: 34601751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. qModeL: A plug-and-play model-based reconstruction for highly accelerated multi-shot diffusion MRI using learned priors.
    Mani M; Magnotta VA; Jacob M
    Magn Reson Med; 2021 Aug; 86(2):835-851. PubMed ID: 33759240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review.
    Singh D; Monga A; de Moura HL; Zhang X; Zibetti MVW; Regatte RR
    Bioengineering (Basel); 2023 Aug; 10(9):. PubMed ID: 37760114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling.
    Hosseini SAH; Zhang C; Weingärtner S; Moeller S; Stuber M; Ugurbil K; Akçakaya M
    PLoS One; 2020; 15(2):e0229418. PubMed ID: 32084235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving high frequency image features of deep learning reconstructions via k-space refinement with null-space kernel.
    Ryu K; Alkan C; Vasanawala SS
    Magn Reson Med; 2022 Sep; 88(3):1263-1272. PubMed ID: 35426470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.