These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33758649)
1. Structural determinants driving the binding process between PDZ domain of wild type human PALS1 protein and SLiM sequences of SARS-CoV E proteins. Lo Cascio E; Toto A; Babini G; De Maio F; Sanguinetti M; Mordente A; Della Longa S; Arcovito A Comput Struct Biotechnol J; 2021; 19():1838-1847. PubMed ID: 33758649 [TBL] [Abstract][Full Text] [Related]
2. Structural basis of coronavirus E protein interactions with human PALS1 PDZ domain. Javorsky A; Humbert PO; Kvansakul M Commun Biol; 2021 Jun; 4(1):724. PubMed ID: 34117354 [TBL] [Abstract][Full Text] [Related]
3. Comparing the binding properties of peptides mimicking the Envelope protein of SARS-CoV and SARS-CoV-2 to the PDZ domain of the tight junction-associated PALS1 protein. Toto A; Ma S; Malagrinò F; Visconti L; Pagano L; Stromgaard K; Gianni S Protein Sci; 2020 Oct; 29(10):2038-2042. PubMed ID: 32822073 [TBL] [Abstract][Full Text] [Related]
4. The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Teoh KT; Siu YL; Chan WL; Schlüter MA; Liu CJ; Peiris JS; Bruzzone R; Margolis B; Nal B Mol Biol Cell; 2010 Nov; 21(22):3838-52. PubMed ID: 20861307 [TBL] [Abstract][Full Text] [Related]
5. Interactions of Severe Acute Respiratory Syndrome Coronavirus 2 Protein E With Cell Junctions and Polarity PSD-95/Dlg/ZO-1-Containing Proteins. Zhu Y; Alvarez F; Wolff N; Mechaly A; Brûlé S; Neitthoffer B; Etienne-Manneville S; Haouz A; Boëda B; Caillet-Saguy C Front Microbiol; 2022; 13():829094. PubMed ID: 35283834 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for SARS-CoV-2 envelope protein recognition of human cell junction protein PALS1. Chai J; Cai Y; Pang C; Wang L; McSweeney S; Shanklin J; Liu Q Nat Commun; 2021 Jun; 12(1):3433. PubMed ID: 34103506 [TBL] [Abstract][Full Text] [Related]
7. Improved binding of SARS-CoV-2 Envelope protein to tight junction-associated PALS1 could play a key role in COVID-19 pathogenesis. De Maio F; Lo Cascio E; Babini G; Sali M; Della Longa S; Tilocca B; Roncada P; Arcovito A; Sanguinetti M; Scambia G; Urbani A Microbes Infect; 2020; 22(10):592-597. PubMed ID: 32891874 [TBL] [Abstract][Full Text] [Related]
8. Computational prediction of short linear motifs from protein sequences. Edwards RJ; Palopoli N Methods Mol Biol; 2015; 1268():89-141. PubMed ID: 25555723 [TBL] [Abstract][Full Text] [Related]
9. Structure of Crumbs tail in complex with the PALS1 PDZ-SH3-GK tandem reveals a highly specific assembly mechanism for the apical Crumbs complex. Li Y; Wei Z; Yan Y; Wan Q; Du Q; Zhang M Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17444-9. PubMed ID: 25385611 [TBL] [Abstract][Full Text] [Related]
10. Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. Davey NE; Seo MH; Yadav VK; Jeon J; Nim S; Krystkowiak I; Blikstad C; Dong D; Markova N; Kim PM; Ivarsson Y FEBS J; 2017 Feb; 284(3):485-498. PubMed ID: 28002650 [TBL] [Abstract][Full Text] [Related]
11. The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. Roh MH; Makarova O; Liu CJ; Shin K; Lee S; Laurinec S; Goyal M; Wiggins R; Margolis B J Cell Biol; 2002 Apr; 157(1):161-72. PubMed ID: 11927608 [TBL] [Abstract][Full Text] [Related]
12. Ca Straus MR; Tang T; Lai AL; Flegel A; Bidon M; Freed JH; Daniel S; Whittaker GR J Virol; 2020 Jun; 94(13):. PubMed ID: 32295925 [TBL] [Abstract][Full Text] [Related]
13. MotifAnalyzer-PDZ: A computational program to investigate the evolution of PDZ-binding target specificity. Valgardson J; Cosbey R; Houser P; Rupp M; Van Bronkhorst R; Lee M; Jagodzinski F; Amacher JF Protein Sci; 2019 Dec; 28(12):2127-2143. PubMed ID: 31599029 [TBL] [Abstract][Full Text] [Related]
14. D-SLIMMER: domain-SLiM interaction motifs miner for sequence based protein-protein interaction data. Hugo W; Ng SK; Sung WK J Proteome Res; 2011 Dec; 10(12):5285-95. PubMed ID: 22004555 [TBL] [Abstract][Full Text] [Related]
15. Bioinformatics Approaches for Predicting Disordered Protein Motifs. Bhowmick P; Guharoy M; Tompa P Adv Exp Med Biol; 2015; 870():291-318. PubMed ID: 26387106 [TBL] [Abstract][Full Text] [Related]
16. SARS-CoV-2 Envelope (E) Protein Interacts with PDZ-Domain-2 of Host Tight Junction Protein ZO1. Shepley-McTaggart A; Sagum CA; Oliva I; Rybakovsky E; DiGuilio K; Liang J; Bedford MT; Cassel J; Sudol M; Mullin JM; Harty RN bioRxiv; 2020 Dec; ():. PubMed ID: 33398268 [TBL] [Abstract][Full Text] [Related]
17. Monomeric and dimeric states of human ZO1-PDZ2 are functional partners of the SARS-CoV-2 E protein. Giacon N; Lo Cascio E; Davidson DS; Polêto MD; Lemkul JA; Pennacchietti V; Pagano L; Zamparelli C; Toto A; Arcovito A Comput Struct Biotechnol J; 2023; 21():3259-3271. PubMed ID: 37293240 [TBL] [Abstract][Full Text] [Related]
18. SLiM on Diet: finding short linear motifs on domain interaction interfaces in Protein Data Bank. Hugo W; Song F; Aung Z; Ng SK; Sung WK Bioinformatics; 2010 Apr; 26(8):1036-42. PubMed ID: 20167627 [TBL] [Abstract][Full Text] [Related]
19. Interactome-wide prediction of short, disordered protein interaction motifs in humans. Edwards RJ; Davey NE; O'Brien K; Shields DC Mol Biosyst; 2012 Jan; 8(1):282-95. PubMed ID: 21879107 [TBL] [Abstract][Full Text] [Related]
20. Static all-atom energetic mappings of the SARS-Cov-2 spike protein and dynamic stability analysis of "Up" versus "Down" protomer states. Peters MH; Bastidas O; Kokron DS; Henze CE PLoS One; 2020; 15(11):e0241168. PubMed ID: 33170884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]