BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33759037)

  • 21. IVUS-based computational modeling and planar biaxial artery material properties for human coronary plaque vulnerability assessment.
    Liu H; Cai M; Yang C; Zheng J; Bach R; Kural MH; Billiar KL; Muccigrosso D; Lu D; Tang D
    Mol Cell Biomech; 2012 Mar; 9(1):77-93. PubMed ID: 22428362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlations between carotid plaque progression and mechanical stresses change sign over time: a patient follow up study using MRI and 3D FSI models.
    Tang D; Yang C; Canton G; Wu Z; Hatsukami T; Yuan C
    Biomed Eng Online; 2013 Oct; 12():105. PubMed ID: 24125580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying Patient-Specific
    Wang L; Zhu J; Maehara A; Lv R; Qu Y; Zhang X; Guo X; Billiar KL; Chen L; Ma G; Mintz GS; Tang D
    Front Physiol; 2021; 12():721195. PubMed ID: 34759832
    [No Abstract]   [Full Text] [Related]  

  • 24. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.
    Javadzadegan A; Yong AS; Chang M; Ng MK; Behnia M; Kritharides L
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):260-272. PubMed ID: 27467730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical coherence tomography-based patient-specific coronary artery reconstruction and fluid-structure interaction simulation.
    Wang J; Paritala PK; Mendieta JB; Komori Y; Raffel OC; Gu Y; Li Z
    Biomech Model Mechanobiol; 2020 Feb; 19(1):7-20. PubMed ID: 31292774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Higher critical plaque wall stress in patients who died of coronary artery disease compared with those who died of other causes: a 3D FSI study based on ex vivo MRI of coronary plaques.
    Huang X; Yang C; Zheng J; Bach R; Muccigrosso D; Woodard PK; Tang D
    J Biomech; 2014 Jan; 47(2):432-7. PubMed ID: 24345380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic Bending Contributes to High Stress in a Human Coronary Atherosclerotic Plaque and Rupture Risk: In Vitro Experimental Modeling and Ex Vivo MRI-Based Computational Modeling Approach.
    Yang C; Tang D; Kobayashi S; Zheng J; Woodard PK; Teng Z; Bach R; Ku DN
    Mol Cell Biomech; 2008; 5(4):259-274. PubMed ID: 19412353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patient-Specific Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models with Fluid-Structure Interactions Based on Serial In Vivo MRI Data.
    Yang C; Tang D; Atluri S
    Comput Model Eng Sci; 2011; 72(1):53-77. PubMed ID: 21927582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D MRI-based multicomponent FSI models for atherosclerotic plaques.
    Tang D; Yang C; Zheng J; Woodard PK; Sicard GA; Saffitz JE; Yuan C
    Ann Biomed Eng; 2004 Jul; 32(7):947-60. PubMed ID: 15298432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of angiographic and IVUS derived coronary geometric reconstructions for evaluation of the association of hemodynamics with coronary artery disease progression.
    Timmins LH; Suo J; Eshtehardi P; Molony DS; McDaniel MC; Oshinski JN; Giddens DP; Samady H
    Int J Cardiovasc Imaging; 2016 Sep; 32(9):1327-1336. PubMed ID: 27229349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Residual Stress, Axial Stretch, and Circumferential Shrinkage on Coronary Plaque Stress and Strain Calculations: A Modeling Study Using IVUS-Based Near-Idealized Geometries.
    Wang L; Zhu J; Samady H; Monoly D; Zheng J; Guo X; Maehara A; Yang C; Ma G; Mintz GS; Tang D
    J Biomech Eng; 2017 Jan; 139(1):0145011-01450111. PubMed ID: 27814429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying effect of intraplaque hemorrhage on critical plaque wall stress in human atherosclerotic plaques using three-dimensional fluid-structure interaction models.
    Huang X; Yang C; Canton G; Ferguson M; Yuan C; Tang D
    J Biomech Eng; 2012 Dec; 134(12):121004. PubMed ID: 23363206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using intravascular ultrasound image-based fluid-structure interaction models and machine learning methods to predict human coronary plaque vulnerability change.
    Wang L; Tang D; Maehara A; Wu Z; Yang C; Muccigrosso D; Matsumura M; Zheng J; Bach R; Billiar KL; Stone GW; Mintz GS
    Comput Methods Biomech Biomed Engin; 2020 Nov; 23(15):1267-1276. PubMed ID: 32696674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear multiscale analysis of coronary atherosclerotic vulnerable plaque artery: fluid-structural modeling with micromechanics.
    Massarwa E; Aronis Z; Eliasy R; Einav S; Haj-Ali R
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1889-1901. PubMed ID: 34191188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Case Report: Evaluating Biomechanical Risk Factors in Carotid Stenosis by Patient-Specific Fluid-Structural Interaction Biomechanical Analysis.
    Wang J; Mendieta JB; Paritala PK; Xiang Y; Raffel OC; McGahan T; Lloyd T; Li Z
    Cerebrovasc Dis; 2021; 50(3):262-269. PubMed ID: 33744885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models.
    Tang D; Yang C; Zheng J; Woodard PK; Saffitz JE; Sicard GA; Pilgram TK; Yuan C
    J Biomech Eng; 2005 Dec; 127(7):1185-94. PubMed ID: 16502661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability.
    Corban MT; Eshtehardi P; Suo J; McDaniel MC; Timmins LH; Rassoul-Arzrumly E; Maynard C; Mekonnen G; King S; Quyyumi AA; Giddens DP; Samady H
    Atherosclerosis; 2014 Feb; 232(2):271-6. PubMed ID: 24468138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up.
    Wang Q; Canton G; Guo J; Guo X; Hatsukami TS; Billiar KL; Yuan C; Wu Z; Tang D
    PLoS One; 2017; 12(7):e0180829. PubMed ID: 28715441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using in vivo Cine and 3D multi-contrast MRI to determine human atherosclerotic carotid artery material properties and circumferential shrinkage rate and their impact on stress/strain predictions.
    Liu H; Canton G; Yuan C; Yang C; Billiar K; Teng Z; Hoffman AH; Tang D
    J Biomech Eng; 2012 Jan; 134(1):011008. PubMed ID: 22482663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared with Fluid/Wall-Only Models.
    Yang C; Tang D; Yuan C; Hatsukami TS; Zheng J; Woodard PK
    Comput Model Eng Sci; 2007 Jan; 19(3):233-246. PubMed ID: 19784387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.