These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33759037)

  • 41. In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared with Fluid/Wall-Only Models.
    Yang C; Tang D; Yuan C; Hatsukami TS; Zheng J; Woodard PK
    Comput Model Eng Sci; 2007 Jan; 19(3):233-246. PubMed ID: 19784387
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphological and Stress Vulnerability Indices for Human Coronary Plaques and Their Correlations with Cap Thickness and Lipid Percent: An IVUS-Based Fluid-Structure Interaction Multi-patient Study.
    Wang L; Zheng J; Maehara A; Yang C; Billiar KL; Wu Z; Bach R; Muccigrosso D; Mintz GS; Tang D
    PLoS Comput Biol; 2015 Dec; 11(12):e1004652. PubMed ID: 26650721
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High shear stress on the coronary arterial wall is related to computed tomography-derived high-risk plaque: a three-dimensional computed tomography and color-coded tissue-characterizing intravascular ultrasonography study.
    Murata N; Hiro T; Takayama T; Migita S; Morikawa T; Tamaki T; Mineki T; Kojima K; Akutsu N; Sudo M; Kitano D; Fukamachi D; Hirayama A; Okumura Y
    Heart Vessels; 2019 Sep; 34(9):1429-1439. PubMed ID: 30976923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models.
    Lv R; Maehara A; Matsumura M; Wang L; Zhang C; Huang M; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    Front Bioeng Biotechnol; 2021; 9():713525. PubMed ID: 34497800
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An assessment of intra-patient variability on observed relationships between wall shear stress and plaque progression in coronary arteries.
    Molony DS; Timmins LH; Hung OY; Rasoul-Arzrumly E; Samady H; Giddens DP
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S2. PubMed ID: 25603192
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cap inflammation leads to higher plaque cap strain and lower cap stress: An MRI-PET/CT-based FSI modeling approach.
    Tang D; Yang C; Huang S; Mani V; Zheng J; Woodard PK; Robson P; Teng Z; Dweck M; Fayad ZA
    J Biomech; 2017 Jan; 50():121-129. PubMed ID: 27847118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Multimodality Image-Based Fluid-Structure Interaction Modeling Approach for Prediction of Coronary Plaque Progression Using IVUS and Optical Coherence Tomography Data With Follow-Up.
    Guo X; Giddens DP; Molony D; Yang C; Samady H; Zheng J; Matsumura M; Mintz GS; Maehara A; Wang L; Tang D
    J Biomech Eng; 2019 Sep; 141(9):0910031-9. PubMed ID: 31141591
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Considering the Influence of Coronary Motion on Artery-Specific Biomechanics Using Fluid-Structure Interaction Simulation.
    Fogell NAT; Patel M; Yang P; Ruis RM; Garcia DB; Naser J; Savvopoulos F; Davies Taylor C; Post AL; Pedrigi RM; de Silva R; Krams R
    Ann Biomed Eng; 2023 Sep; 51(9):1950-1964. PubMed ID: 37436564
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study.
    Lv R; Maehara A; Matsumura M; Wang L; Wang Q; Zhang C; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    Biomed Eng Online; 2020 Nov; 19(1):90. PubMed ID: 33256759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The relationship between volumetric plaque components and classical cardiovascular risk factors and the metabolic syndrome a 3-vessel coronary artery virtual histology-intravascular ultrasound analysis.
    Zheng M; Choi SY; Tahk SJ; Lim HS; Yang HM; Choi BJ; Yoon MH; Park JS; Hwang GS; Shin JH
    JACC Cardiovasc Interv; 2011 May; 4(5):503-10. PubMed ID: 21596322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simultaneous evaluation of plaque stability and ischemic potential of coronary lesions in a fluid-structure interaction analysis.
    Wu X; von Birgelen C; Zhang S; Ding D; Huang J; Tu S
    Int J Cardiovasc Imaging; 2019 Sep; 35(9):1563-1572. PubMed ID: 31053979
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validation of biomechanical assessment of coronary plaque vulnerability based on intravascular optical coherence tomography and digital subtraction angiography.
    Zhang X; Nan N; Tong X; Chen H; Zhang X; Li S; Zhang M; Gao B; Wang X; Song X; Chen D
    Quant Imaging Med Surg; 2024 Feb; 14(2):1477-1492. PubMed ID: 38415169
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oscillatory wall shear stress is a dominant flow characteristic affecting lesion progression patterns and plaque vulnerability in patients with coronary artery disease.
    Timmins LH; Molony DS; Eshtehardi P; McDaniel MC; Oshinski JN; Giddens DP; Samady H
    J R Soc Interface; 2017 Feb; 14(127):. PubMed ID: 28148771
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced External Counterpulsation Treatment May Intervene The Advanced Atherosclerotic Plaque Progression by Inducing The Variations of Mechanical Factors: A 3D FSI Study Based on in vivo Animal Experiment.
    Du J; Wang L
    Mol Cell Biomech; 2015 Dec; 12(4):249-63. PubMed ID: 27263260
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice.
    De Wilde D; Trachet B; De Meyer G; Segers P
    J Biomech; 2016 Sep; 49(13):2741-2747. PubMed ID: 27342001
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relation between plaque type, plaque thickness, blood shear stress, and plaque stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound.
    Balocco S; Gatta C; Alberti M; Carrillo X; Rigla J; Radeva P
    Med Phys; 2012 Dec; 39(12):7430-45. PubMed ID: 23231293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Intravascular ultrasound with virtual histology in assessment of atherosclerotic plaque composition in patients with coronary artery disease and type 2 diabetes mellitus].
    Zakharov AS; Michurova MS; Terekhin SA; Kalashnikov VY; Smirnova OM; Shestakova MV; Dedov II
    Ter Arkh; 2019 Dec; 91(12):41-46. PubMed ID: 32598588
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rupture Risk Assessment of Cervical Spinal Manipulations on Carotid Atherosclerotic Plaque by a 3D Fluid-Structure Interaction Model.
    Chen Y; Zhang S; Chen Y; Lao Y; Huang X; Huang X; Liao Q; Li Y
    Biomed Res Int; 2021; 2021():8239326. PubMed ID: 33490277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical simulations of patient-specific models with multiple plaques in human peripheral artery: a fluid-structure interaction analysis.
    Wang D; Serracino-Inglott F; Feng J
    Biomech Model Mechanobiol; 2021 Feb; 20(1):255-265. PubMed ID: 32915332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.