These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33759131)

  • 1. Markov State Models to Elucidate Ligand Binding Mechanism.
    Ge Y; Voelz VA
    Methods Mol Biol; 2021; 2266():239-259. PubMed ID: 33759131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with Kinetic Network Models.
    Zhou G; Pantelopulos GA; Mukherjee S; Voelz VA
    Biophys J; 2017 Aug; 113(4):785-793. PubMed ID: 28834715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation Process of a MDM2/p53 Complex Investigated by Parallel Cascade Selection Molecular Dynamics and the Markov State Model.
    Tran DP; Kitao A
    J Phys Chem B; 2019 Mar; 123(11):2469-2478. PubMed ID: 30645121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-State Preorganization of Cyclic β-Hairpin Ligands Determines Binding Mechanism and Affinities for MDM2.
    Ge Y; Zhang S; Erdelyi M; Voelz VA
    J Chem Inf Model; 2021 May; 61(5):2353-2367. PubMed ID: 33905247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of the regulatory ACT domain of human phenylalanine hydroxylase (PAH) unveil its mechanism of phenylalanine binding.
    Ge Y; Borne E; Stewart S; Hansen MR; Arturo EC; Jaffe EK; Voelz VA
    J Biol Chem; 2018 Dec; 293(51):19532-19543. PubMed ID: 30287685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Nonnative Interactions on the Binding Kinetics of Intrinsically Disordered p53 with MDM2: Insights from All-Atom Simulation and Markov State Model Analysis.
    Xu Q; Yang M; Ji J; Weng J; Wang W; Xu X
    J Chem Inf Model; 2024 Jul; 64(13):5219-5231. PubMed ID: 38916177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsecond simulations of mdm2 and its complex with p53 yield insight into force field accuracy and conformational dynamics.
    Pantelopulos GA; Mukherjee S; Voelz VA
    Proteins; 2015 Sep; 83(9):1665-76. PubMed ID: 26138282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic Selection and Relaxation of the Intrinsically Disordered Region of a Protein upon Binding.
    Tran DP; Kitao A
    J Chem Theory Comput; 2020 Apr; 16(4):2835-2845. PubMed ID: 32192337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Markov models of the apo-MDM2 lid region reveal diffuse yet two-state binding dynamics and receptor poses for computational docking.
    Mukherjee S; Pantelopulos GA; Voelz VA
    Sci Rep; 2016 Aug; 6():31631. PubMed ID: 27538695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Conformational-Selection and Induced-Fit Aspects in the Binding-Induced Folding of PMI from Markov State Modeling of Atomistic Simulations.
    Paul F; Noé F; Weikl TR
    J Phys Chem B; 2018 May; 122(21):5649-5656. PubMed ID: 29522679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Markov State Model of Solvent Features Reveals Water Dynamics in Protein-Peptide Binding.
    Raddi RM; Voelz VA
    J Phys Chem B; 2023 Dec; 127(50):10682-10690. PubMed ID: 38078851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the Free-Energy Landscape of MDM2 Protein-Ligand Interactions by Steered Molecular Dynamics Simulations.
    Hu G; Xu S; Wang J
    Chem Biol Drug Des; 2015 Dec; 86(6):1351-9. PubMed ID: 26032728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Markov State Models to simulate long timescale dynamics of biological macromolecules.
    Da LT; Sheong FK; Silva DA; Huang X
    Adv Exp Med Biol; 2014; 805():29-66. PubMed ID: 24446356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing the conformational landscape of MDM2-binding p53 peptides using Molecular Dynamics simulations.
    Yadahalli S; Li J; Lane DP; Gosavi S; Verma CS
    Sci Rep; 2017 Nov; 7(1):15600. PubMed ID: 29142290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dynamics-Markov State Model of Protein Ligand Binding and Allostery in CRIB-PDZ: Conformational Selection and Induced Fit.
    Thayer KM; Lakhani B; Beveridge DL
    J Phys Chem B; 2017 Jun; 121(22):5509-5514. PubMed ID: 28489401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding Kinetics of the Intrinsically Disordered p53 Family Transactivation Domains and MDM2.
    Åberg E; Karlsson OA; Andersson E; Jemth P
    J Phys Chem B; 2018 Jul; 122(27):6899-6905. PubMed ID: 29878773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing Kinetic Network Models to Elucidate Mechanisms of Functional Conformational Changes of Enzymes and Their Recognition with Ligands.
    Zhang L; Jiang H; Sheong FK; Pardo-Avila F; Cheung PP; Huang X
    Methods Enzymol; 2016; 578():343-71. PubMed ID: 27497174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Atomistic Simulation of Pathways and Calculation of Rate Constants for a Protein-Peptide Binding Process: Application to the MDM2 Protein and an Intrinsically Disordered p53 Peptide.
    Zwier MC; Pratt AJ; Adelman JL; Kaus JW; Zuckerman DM; Chong LT
    J Phys Chem Lett; 2016 Sep; 7(17):3440-5. PubMed ID: 27532687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Markov State Models: From an Art to a Science.
    Husic BE; Pande VS
    J Am Chem Soc; 2018 Feb; 140(7):2386-2396. PubMed ID: 29323881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2.
    Bueren-Calabuig JA; Michel J
    PLoS Comput Biol; 2015 Jun; 11(6):e1004282. PubMed ID: 26046940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.