These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33759133)

  • 1. Multiple Target Drug Design Using LigBuilder 3.
    Qing X; Wang S; Yuan Y; Pei J; Lai L
    Methods Mol Biol; 2021; 2266():279-298. PubMed ID: 33759133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LigBuilder V3: A Multi-Target
    Yuan Y; Pei J; Lai L
    Front Chem; 2020; 8():142. PubMed ID: 32181242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CONCERTS: dynamic connection of fragments as an approach to de novo ligand design.
    Pearlman DA; Murcko MA
    J Med Chem; 1996 Apr; 39(8):1651-63. PubMed ID: 8648605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can an optimization/scoring procedure in ligand-protein docking be employed to probe drug-resistant mutations in proteins?
    Chen YZ; Gu XL; Cao ZW
    J Mol Graph Model; 2001; 19(6):560-70. PubMed ID: 11552685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LigBuilder 2: a practical de novo drug design approach.
    Yuan Y; Pei J; Lai L
    J Chem Inf Model; 2011 May; 51(5):1083-91. PubMed ID: 21513346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand design package (Ludi--MSI) applied to known inhibitors of the HIV-1 protease. Test of performance.
    Bogacewicz R; Trylska J; Geller M
    Acta Pol Pharm; 2000 Nov; 57 Suppl():25-8. PubMed ID: 11293255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure based drug design for HIV protease: from molecular modeling to cheminformatics.
    Volarath P; Harrison RW; Weber IT
    Curr Top Med Chem; 2007; 7(10):1030-8. PubMed ID: 17508936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: a single mode of inhibition for the three HIV enzymes?
    Camarasa MJ; Velázquez S; San-Félix A; Pérez-Pérez MJ; Gago F
    Antiviral Res; 2006 Sep; 71(2-3):260-7. PubMed ID: 16872687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification.
    Islam MA; Pillay TS
    J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation density components analysis of fullerene-based anti-HIV drugs.
    Fakhraee S; Souri M
    J Mol Model; 2014 Nov; 20(11):2486. PubMed ID: 25388278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S; Mavromoustakos T; Chronakis N; Papadopoulos MG
    Bioorg Med Chem; 2008 Dec; 16(23):9957-74. PubMed ID: 18996019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PRO_LIGAND: an approach to de novo molecular design. 4. Application to the design of peptides.
    Frenkel D; Clark DE; Li J; Murray CW; RObson B; Waszkowycz B; Westhead DR
    J Comput Aided Mol Des; 1995 Jun; 9(3):213-25. PubMed ID: 7561974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in automated docking applied to human immunodeficiency virus type 1 protease.
    Miller MD; Sheridan RP; Kearsley SK; Underwood DJ
    Methods Enzymol; 1994; 241():354-70. PubMed ID: 7854188
    [No Abstract]   [Full Text] [Related]  

  • 15. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design.
    Wlodawer A; Vondrasek J
    Annu Rev Biophys Biomol Struct; 1998; 27():249-84. PubMed ID: 9646869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BUILDER v.2: improving the chemistry of a de novo design strategy.
    Roe DC; Kuntz ID
    J Comput Aided Mol Des; 1995 Jun; 9(3):269-82. PubMed ID: 7561978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algorithm to design inhibitors using stereochemically mixed l,d polypeptides: Validation against HIV protease.
    Gupta P; Durani S
    Int J Biol Macromol; 2015 Nov; 81():410-7. PubMed ID: 26279121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined approach using ligand efficiency, cross-docking, and antitarget hits for wild-type and drug-resistant Y181C HIV-1 reverse transcriptase.
    García-Sosa AT; Sild S; Takkis K; Maran U
    J Chem Inf Model; 2011 Oct; 51(10):2595-611. PubMed ID: 21875140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site binding modes of dimeric phloroglucinols for HIV-1 reverse transcriptase, protease and integrase.
    Gupta P; Kumar R; Garg P; Singh IP
    Bioorg Med Chem Lett; 2010 Aug; 20(15):4427-31. PubMed ID: 20594846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmental analysis of molecular surface electrostatic potentials: application to enzyme inhibition.
    Brinck T; Jin P; Ma Y; Murray JS; Politzer P
    J Mol Model; 2003 Apr; 9(2):77-83. PubMed ID: 12707800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.