These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Characterization of local elastic modulus in confined polymer films via AFM indentation. Cheng X; Putz KW; Wood CD; Brinson LC Macromol Rapid Commun; 2015 Feb; 36(4):391-7. PubMed ID: 25537230 [TBL] [Abstract][Full Text] [Related]
23. Probing the Linear-to-Plastic Transition in Polymer Nanocomposites via Atomistic Simulations: The Role of Interphases. Reda H; Katsamba P; Chazirakis A; Harmandaris V Macromol Rapid Commun; 2024 Dec; 45(24):e2400612. PubMed ID: 39292818 [TBL] [Abstract][Full Text] [Related]
24. Quantitative equivalence between polymer nanocomposites and thin polymer films. Bansal A; Yang H; Li C; Cho K; Benicewicz BC; Kumar SK; Schadler LS Nat Mater; 2005 Sep; 4(9):693-8. PubMed ID: 16086021 [TBL] [Abstract][Full Text] [Related]
25. Natural Rubber-Filler Interactions: What Are the Parameters? Chan AJ; Steenkeste K; Canette A; Eloy M; Brosson D; Gaboriaud F; Fontaine-Aupart MP Langmuir; 2015 Nov; 31(45):12437-46. PubMed ID: 26488560 [TBL] [Abstract][Full Text] [Related]
26. Static and Dynamic Mechanical Characteristics of Ionic Liquid Modified MWCNT-SBR Composites: Theoretical Perspectives for the Nanoscale Reinforcement Mechanism. Abraham J; Thomas J; Kalarikkal N; George SC; Thomas S J Phys Chem B; 2018 Feb; 122(4):1525-1536. PubMed ID: 29356529 [TBL] [Abstract][Full Text] [Related]
27. Estimation of the tensile modulus of polymer carbon nanotube nanocomposites containing filler networks and interphase regions by development of the Kolarik model. Chen S; Sarafbidabad M; Zare Y; Rhee KY RSC Adv; 2018 Jun; 8(42):23825-23834. PubMed ID: 35540261 [TBL] [Abstract][Full Text] [Related]
28. Reinforcement of rubber nanocomposite thin sheets by percolation of pristine cellulose nanocrystals. Jardin JM; Zhang Z; Hu G; Tam KC; Mekonnen TH Int J Biol Macromol; 2020 Jun; 152():428-436. PubMed ID: 32112834 [TBL] [Abstract][Full Text] [Related]
29. A novel non-aqueous sol-gel route for the in situ synthesis of high loaded silica-rubber nanocomposites. Wahba L; D'Arienzo M; Dirè S; Donetti R; Hanel T; Morazzoni F; Niederberger M; Santo N; Tadiello L; Scotti R Soft Matter; 2014 Apr; 10(13):2234-44. PubMed ID: 24651692 [TBL] [Abstract][Full Text] [Related]
30. In Situ Nanostress Visualization Method to Reveal the Micromechanical Mechanism of Nanocomposites by Atomic Force Microscopy. Liang X; Kojima T; Ito M; Amino N; Liu H; Koishi M; Nakajima K ACS Appl Mater Interfaces; 2023 Mar; 15(9):12414-12422. PubMed ID: 36852783 [TBL] [Abstract][Full Text] [Related]
31. Relaxation and Crystallization of Oriented Polymer Melts with Anisotropic Filler Networks. Nie Y; Hao T; Gu Z; Wang Y; Liu Y; Zhang D; Wei Y; Li S; Zhou Z J Phys Chem B; 2017 Feb; 121(6):1426-1437. PubMed ID: 28112936 [TBL] [Abstract][Full Text] [Related]
32. Temperature-dependent surface nanomechanical properties of a thermoplastic nanocomposite. Huang H; Dobryden I; Ihrner N; Johansson M; Ma H; Pan J; Claesson PM J Colloid Interface Sci; 2017 May; 494():204-214. PubMed ID: 28160705 [TBL] [Abstract][Full Text] [Related]
33. Investigation of Hydrothermally Stressed Silicone Rubber/Silica Micro and Nanocomposite for the Coating High Voltage Insulation Applications. Faiza ; Khattak A; Butt SU; Imran K; Ulasyar A; Ali A; Khan ZS; Mahmood A; Ullah N; Alahmadi AA; Khan A Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34202214 [TBL] [Abstract][Full Text] [Related]
34. Inorganic and Organic Hybrid Nanoparticles as Multifunctional Crosslinkers for Rubber Vulcanization with High-Filler Rubber Interaction. Chen L; Guo X; Luo Y; Jia Z; Chen Y; Jia D Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961063 [TBL] [Abstract][Full Text] [Related]
35. XLPE based Al2O3-clay binary and ternary hybrid nanocomposites: self-assembly of nanoscale hybrid fillers, polymer chain confinement and transport characteristics. Jose JP; Thomas S Phys Chem Chem Phys; 2014 Oct; 16(37):20190-201. PubMed ID: 25139530 [TBL] [Abstract][Full Text] [Related]
36. Prediction of elastic properties for polymer-particle nanocomposites exhibiting an interphase. Deng F; Van Vliet KJ Nanotechnology; 2011 Apr; 22(16):165703. PubMed ID: 21393814 [TBL] [Abstract][Full Text] [Related]
37. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix. Grabowski CA; Fillery SP; Westing NM; Chi C; Meth JS; Durstock MF; Vaia RA ACS Appl Mater Interfaces; 2013 Jun; 5(12):5486-92. PubMed ID: 23639183 [TBL] [Abstract][Full Text] [Related]
38. Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites. El Khoury D; Arinero R; Laurentie JC; Bechelany M; Ramonda M; Castellon J Beilstein J Nanotechnol; 2018; 9():2999-3012. PubMed ID: 30591848 [TBL] [Abstract][Full Text] [Related]
39. Effects of Size and Aggregation/Agglomeration of Nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites. Ashraf MA; Peng W; Zare Y; Rhee KY Nanoscale Res Lett; 2018 Jul; 13(1):214. PubMed ID: 30019092 [TBL] [Abstract][Full Text] [Related]
40. Performance Enhancement of Silicone Rubber Using Superhydrophobic Silica Aerogel with Robust Nanonetwork Structure and Outstanding Interfacial Effect. Huang L; Song Z; Song X; Yu F; Lu A; He H; Liu W; Wang Z; Zhang P; Li S; Zhao X; Cui S; Zhu C; Liu Y ACS Appl Mater Interfaces; 2024 May; 16(17):22580-22592. PubMed ID: 38634565 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]