These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33759365)

  • 1. Role of Intermolecular Interactions in the Catalytic Reaction of Formic Acid on Cu(111).
    Shiotari A; Putra SEM; Shiozawa Y; Hamamoto Y; Inagaki K; Morikawa Y; Sugimoto Y; Yoshinobu J; Hamada I
    Small; 2021 May; 17(20):e2008010. PubMed ID: 33759365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of step-site and zinc in surface chemistry of formic acid on clean and Zn-modified Cu(111) and Cu(997) surfaces studied by HR-XPS, TPD, and IRAS.
    Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2020 Jan; 152(4):044703. PubMed ID: 32007070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species.
    Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2015 Dec; 143(23):234707. PubMed ID: 26696070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formic acid adsorption and decomposition on clean and atomic oxygen pre-covered Cu(100) surfaces.
    Li G; Guo W; Zhou X; Yu X; Zhu J
    J Chem Phys; 2020 Mar; 152(11):114703. PubMed ID: 32199429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen vacancy promoting catalytic dehydration of formic acid on TiO2(110) by in situ scanning tunneling microscopic observation.
    Aizawa M; Morikawa Y; Namai Y; Morikawa H; Iwasawa Y
    J Phys Chem B; 2005 Oct; 109(40):18831-8. PubMed ID: 16853423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling of formic acid on the partially oxidized p(2 × 1) Cu(110) surface reconstruction at low coverages.
    Chen Z; Martirez JMP; Zahl P; Carter EA; Koel BE
    J Chem Phys; 2019 Jan; 150(4):041720. PubMed ID: 30709261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution.
    Fukuzumi S; Kobayashi T; Suenobu T
    ChemSusChem; 2008; 1(10):827-34. PubMed ID: 18846597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assisted deprotonation of formic acid on Cu(111) and self-assembly of 1D chains.
    Baber AE; Mudiyanselage K; Senanayake SD; Beatriz-Vidal A; Luck KA; Sykes EC; Liu P; Rodriguez JA; Stacchiola DJ
    Phys Chem Chem Phys; 2013 Aug; 15(29):12291-8. PubMed ID: 23775138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces.
    Yu WY; Mullen GM; Flaherty DW; Mullins CB
    J Am Chem Soc; 2014 Aug; 136(31):11070-8. PubMed ID: 25019609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Van der Waals density functional study of formic acid adsorption and decomposition on Cu(111).
    Putra SEM; Muttaqien F; Hamamoto Y; Inagaki K; Hamada I; Morikawa Y
    J Chem Phys; 2019 Apr; 150(15):154707. PubMed ID: 31005107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualizing the Promoting Role of Interfacial Water in the Deprotonation of Formic Acid on Cu(111).
    Yang P; Liu H; Jin Q; Lai Y; Zeng Y; Zhang C; Dong J; Sun W; Guo Q; Cao D; Guo J
    J Am Chem Soc; 2024 Jan; 146(1):210-217. PubMed ID: 38037330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pd
    Lee WJ; Hwang YJ; Kim J; Jeong H; Yoon CW
    Chemphyschem; 2019 May; 20(10):1382-1391. PubMed ID: 30706621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of formaldehyde over Cu-Al2O3 catalyst at room temperature.
    Zhang CB; Shi XY; Gao HW; He H
    J Environ Sci (China); 2005; 17(3):429-32. PubMed ID: 16083117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanol-Water Aqueous-Phase Reforming with the Assistance of Dehydrogenases at Near-Room Temperature.
    Shen Y; Zhan Y; Li S; Ning F; Du Y; Huang Y; He T; Zhou X
    ChemSusChem; 2018 Mar; 11(5):864-871. PubMed ID: 29327513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology Dependent Reactivity of CsO
    Mehar V; Liao W; Mahapatra M; Shi R; Lim H; Barba-Nieto I; Hunt A; Waluyo I; Liu P; Rodriguez JA
    ACS Nano; 2023 Nov; 17(22):22990-22998. PubMed ID: 37948574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Sulfur-Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate.
    Huang Y; Deng Y; Handoko AD; Goh GKL; Yeo BS
    ChemSusChem; 2018 Jan; 11(1):320-326. PubMed ID: 28881436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid.
    Yoo JS; Christensen R; Vegge T; Nørskov JK; Studt F
    ChemSusChem; 2016 Feb; 9(4):358-63. PubMed ID: 26663854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning electrochemical microscopy: surface interrogation of adsorbed hydrogen and the open circuit catalytic decomposition of formic acid at platinum.
    Rodríguez-López J; Bard AJ
    J Am Chem Soc; 2010 Apr; 132(14):5121-9. PubMed ID: 20225806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into the dehydrogenation of formaldehyde, formic acid and methanol using the Pt
    Phan TT; Dao LTT; Giang LPT; Nguyen MT; Nguyen HMT
    J Mol Graph Model; 2022 Mar; 111():108096. PubMed ID: 34875503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.