These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 33759366)
21. DNA-π Amphiphiles: A Unique Building Block for the Crafting of DNA-Decorated Unilamellar Nanostructures. Albert SK; Golla M; Krishnan N; Perumal D; Varghese R Acc Chem Res; 2020 Nov; 53(11):2668-2679. PubMed ID: 33052654 [TBL] [Abstract][Full Text] [Related]
22. Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides. Yang G; Zheng W; Tao G; Wu L; Zhou QF; Kochovski Z; Ji T; Chen H; Li X; Lu Y; Ding HM; Yang HB; Chen G; Jiang M ACS Nano; 2019 Nov; 13(11):13474-13485. PubMed ID: 31651143 [TBL] [Abstract][Full Text] [Related]
23. DNA Origami as Scaffolds for Self-Assembly of Lipids and Proteins. Dong Y; Mao Y Chembiochem; 2019 Oct; 20(19):2422-2431. PubMed ID: 30963675 [TBL] [Abstract][Full Text] [Related]
24. Membrane surface dynamics of DNA-threaded nanopores revealed by simultaneous single-molecule optical and ensemble electrical recording. Chandler EL; Smith AL; Burden LM; Kasianowicz JJ; Burden DL Langmuir; 2004 Feb; 20(3):898-905. PubMed ID: 15773121 [TBL] [Abstract][Full Text] [Related]
25. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Qiu F; Chen Y; Tang C; Zhao X Int J Nanomedicine; 2018; 13():5003-5022. PubMed ID: 30214203 [TBL] [Abstract][Full Text] [Related]
26. Self-Assembly of DNA-Containing Copolymers. Jia F; Li H; Chen R; Zhang K Bioconjug Chem; 2019 Jul; 30(7):1880-1888. PubMed ID: 30789706 [TBL] [Abstract][Full Text] [Related]
27. Light-Driven ATP Transmembrane Transport Controlled by DNA Nanomachines. Li P; Xie G; Liu P; Kong XY; Song Y; Wen L; Jiang L J Am Chem Soc; 2018 Nov; 140(47):16048-16052. PubMed ID: 30372056 [TBL] [Abstract][Full Text] [Related]
28. A nanohybrid membrane with lipid bilayer-like properties utilized as a conductimetric saccharin sensor. Chalkias NG; Giannelis EP Biosens Bioelectron; 2007 Oct; 23(3):370-6. PubMed ID: 17548189 [TBL] [Abstract][Full Text] [Related]
29. DNA-cholesterol barges as programmable membrane-exploring agents. Johnson-Buck A; Jiang S; Yan H; Walter NG ACS Nano; 2014 Jun; 8(6):5641-9. PubMed ID: 24833515 [TBL] [Abstract][Full Text] [Related]
30. Modifying Membrane Morphology and Interactions with DNA Origami Clathrin-Mimic Networks. Journot CMA; Ramakrishna V; Wallace MI; Turberfield AJ ACS Nano; 2019 Sep; 13(9):9973-9979. PubMed ID: 31418553 [TBL] [Abstract][Full Text] [Related]
31. Drug delivery systems based on nucleic acid nanostructures. de Vries JW; Zhang F; Herrmann A J Control Release; 2013 Dec; 172(2):467-83. PubMed ID: 23742878 [TBL] [Abstract][Full Text] [Related]
32. Chemotherapeutic drug-DNA hybrid nanostructures for anti-tumor therapy. Huang X; Blum NT; Lin J; Shi J; Zhang C; Huang P Mater Horiz; 2021 Jan; 8(1):78-101. PubMed ID: 34821291 [TBL] [Abstract][Full Text] [Related]
33. Counterion-activated polyions as soft sensing systems in lipid bilayer membranes: from cell-penetrating peptides to DNA. Takeuchi T; Sakai N; Matile S Faraday Discuss; 2009; 143():187-203; discussion 265-75. PubMed ID: 20334102 [TBL] [Abstract][Full Text] [Related]
34. Fabrication of Metal Nanostructures on DNA Templates. Li N; Shang Y; Han Z; Wang T; Wang ZG; Ding B ACS Appl Mater Interfaces; 2019 Apr; 11(15):13835-13852. PubMed ID: 30480424 [TBL] [Abstract][Full Text] [Related]
35. Switchable domain partitioning and diffusion of DNA origami rods on membranes. Czogalla A; Petrov EP; Kauert DJ; Uzunova V; Zhang Y; Seidel R; Schwille P Faraday Discuss; 2013; 161():31-43; discussion 113-50. PubMed ID: 23805736 [TBL] [Abstract][Full Text] [Related]
36. Characterization of channel-forming peptide nanostructures. Arseneault M; Dumont M; Otis F; Voyer N Biophys Chem; 2012 Mar; 162():6-13. PubMed ID: 22245249 [TBL] [Abstract][Full Text] [Related]
37. Using membrane stress to our advantage. Shearman GC; Attard GS; Hunt AN; Jackowski S; Baciu M; Sebai SC; Mulet X; Clarke JA; Law RV; Plisson C; Parker CA; Gee A; Ces O; Templer RH Biochem Soc Trans; 2007 Jun; 35(Pt 3):498-501. PubMed ID: 17511638 [TBL] [Abstract][Full Text] [Related]
38. Structural DNA nanotechnology for intelligent drug delivery. Chao J; Liu H; Su S; Wang L; Huang W; Fan C Small; 2014 Nov; 10(22):4626-35. PubMed ID: 24955859 [TBL] [Abstract][Full Text] [Related]
39. Emerging Biomimetic Applications of DNA Nanotechnology. Shen H; Wang Y; Wang J; Li Z; Yuan Q ACS Appl Mater Interfaces; 2019 Apr; 11(15):13859-13873. PubMed ID: 29939004 [TBL] [Abstract][Full Text] [Related]
40. Self-Assembly of Protein-Containing Lipid-Bilayer Nanodiscs from Small-Molecule Amphiphiles. Mahler F; Meister A; Vargas C; Durand G; Keller S Small; 2021 Dec; 17(49):e2103603. PubMed ID: 34674382 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]