These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33760066)

  • 1. PecanPy: a fast, efficient and parallelized Python implementation of node2vec.
    Liu R; Krishnan A
    Bioinformatics; 2021 Oct; 37(19):3377-3379. PubMed ID: 33760066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurately modeling biased random walks on weighted networks using node2vec.
    Liu R; Hirn M; Krishnan A
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36688699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BioKEEN: a library for learning and evaluating biological knowledge graph embeddings.
    Ali M; Hoyt CT; Domingo-Fernández D; Lehmann J; Jabeen H
    Bioinformatics; 2019 Sep; 35(18):3538-3540. PubMed ID: 30768158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PyGenePlexus: a Python package for gene discovery using network-based machine learning.
    Mancuso CA; Liu R; Krishnan A
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36721325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mOWL: Python library for machine learning with biomedical ontologies.
    Zhapa-Camacho F; Kulmanov M; Hoehndorf R
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36534832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. node2vec: Scalable Feature Learning for Networks.
    Grover A; Leskovec J
    KDD; 2016 Aug; 2016():855-864. PubMed ID: 27853626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuro-symbolic representation learning on biological knowledge graphs.
    Alshahrani M; Khan MA; Maddouri O; Kinjo AR; Queralt-Rosinach N; Hoehndorf R
    Bioinformatics; 2017 Sep; 33(17):2723-2730. PubMed ID: 28449114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph Transformer Networks: Learning meta-path graphs to improve GNNs.
    Yun S; Jeong M; Yoo S; Lee S; Yi SS; Kim R; Kang J; Kim HJ
    Neural Netw; 2022 Sep; 153():104-119. PubMed ID: 35716619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GRAPE for fast and scalable graph processing and random-walk-based embedding.
    Cappelletti L; Fontana T; Casiraghi E; Ravanmehr V; Callahan TJ; Cano C; Joachimiak MP; Mungall CJ; Robinson PN; Reese J; Valentini G
    Nat Comput Sci; 2023 Jun; 3(6):552-568. PubMed ID: 38177435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STonKGs: a sophisticated transformer trained on biomedical text and knowledge graphs.
    Balabin H; Hoyt CT; Birkenbihl C; Gyori BM; Bachman J; Kodamullil AT; Plöger PG; Hofmann-Apitius M; Domingo-Fernández D
    Bioinformatics; 2022 Mar; 38(6):1648-1656. PubMed ID: 34986221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SGTK: a toolkit for visualization and assessment of scaffold graphs.
    Kunyavskaya O; Prjibelski AD
    Bioinformatics; 2019 Jul; 35(13):2303-2305. PubMed ID: 30475983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph contextualized attention network for predicting synthetic lethality in human cancers.
    Long Y; Wu M; Liu Y; Zheng J; Kwoh CK; Luo J; Li X
    Bioinformatics; 2021 Aug; 37(16):2432-2440. PubMed ID: 33609108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Theoretical Analysis of DeepWalk and Node2vec for Exact Recovery of Community Structures in Stochastic Blockmodels.
    Zhang Y; Tang M
    IEEE Trans Pattern Anal Mach Intell; 2024 Feb; 46(2):1065-1078. PubMed ID: 37878437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallelized calculation of permutation tests.
    Ekvall M; Höhle M; Käll L
    Bioinformatics; 2021 Apr; 36(22-23):5392-5397. PubMed ID: 33289531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases.
    Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P
    Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CLEP: a hybrid data- and knowledge-driven framework for generating patient representations.
    Bharadhwaj VS; Ali M; Birkenbihl C; Mubeen S; Lehmann J; Hofmann-Apitius M; Hoyt CT; Domingo-Fernández D
    Bioinformatics; 2021 Oct; 37(19):3311-3318. PubMed ID: 33964127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks.
    Budach S; Marsico A
    Bioinformatics; 2018 Sep; 34(17):3035-3037. PubMed ID: 29659719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nezzle: an interactive and programmable visualization of biological networks in Python.
    Lee D
    Bioinformatics; 2022 Jun; 38(12):3310-3311. PubMed ID: 35552638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.