These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 33760101)

  • 41. Polar PIN localization directs auxin flow in plants.
    Wisniewska J; Xu J; Seifertová D; Brewer PB; Ruzicka K; Blilou I; Rouquié D; Benková E; Scheres B; Friml J
    Science; 2006 May; 312(5775):883. PubMed ID: 16601151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. What remains of the Cholodny-Went theory? All, but it is only a partial answer within the larger mechanism of tropism.
    Hertel R
    Plant Cell Environ; 1992 Sep; 15(7):771-2. PubMed ID: 11541806
    [No Abstract]   [Full Text] [Related]  

  • 43. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport.
    Naramoto S
    Curr Opin Plant Biol; 2017 Dec; 40():8-14. PubMed ID: 28686910
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution.
    Hazak O; Bloch D; Poraty L; Sternberg H; Zhang J; Friml J; Yalovsky S
    PLoS Biol; 2010 Jan; 8(1):e1000282. PubMed ID: 20098722
    [TBL] [Abstract][Full Text] [Related]  

  • 45. What remains of the Cholodny-Went theory? IAA in growing and gravireacting maize roots.
    Pilet PE
    Plant Cell Environ; 1992 Sep; 15(7):779-80. PubMed ID: 11541810
    [No Abstract]   [Full Text] [Related]  

  • 46. Subcellular trafficking of PIN auxin efflux carriers in auxin transport.
    Friml J
    Eur J Cell Biol; 2010; 89(2-3):231-5. PubMed ID: 19944476
    [TBL] [Abstract][Full Text] [Related]  

  • 47. What remains of the Cholodny-Went theory? A phantom in phototropism.
    Bruinsma J
    Plant Cell Environ; 1992 Sep; 15(7):765-6. PubMed ID: 11541803
    [No Abstract]   [Full Text] [Related]  

  • 48. Local regulation of auxin transport in root-apex transition zone mediates aluminium-induced Arabidopsis root-growth inhibition.
    Li C; Liu G; Geng X; He C; Quan T; Hayashi KI; De Smet I; Robert HS; Ding Z; Yang ZB
    Plant J; 2021 Oct; 108(1):55-66. PubMed ID: 34273207
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparison of lateral root patterning among dicot and monocot plants.
    Chen Y; Xie Y; Song C; Zheng L; Rong X; Jia L; Luo L; Zhang C; Qu X; Xuan W
    Plant Sci; 2018 Sep; 274():201-211. PubMed ID: 30080605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Roles for IBA-derived auxin in plant development.
    Frick EM; Strader LC
    J Exp Bot; 2018 Jan; 69(2):169-177. PubMed ID: 28992091
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Auxin distribution and transport in the transition zone (peg region) between hypocotyl and root of cucumber seedlings].
    Kamada M; Fujii N; Higashitani A; Takahashi H
    Biol Sci Space; 2001 Oct; 15(3):244-5. PubMed ID: 11997624
    [No Abstract]   [Full Text] [Related]  

  • 52. Self-organizing periodicity in development: organ positioning in plants.
    Bhatia N; Heisler MG
    Development; 2018 Feb; 145(3):. PubMed ID: 29439134
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane.
    Shinohara N; Taylor C; Leyser O
    PLoS Biol; 2013; 11(1):e1001474. PubMed ID: 23382651
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana.
    López-Bucio J; Ortiz-Castro R; Ruíz-Herrera LF; Juárez CV; Hernández-Madrigal F; Carreón-Abud Y; Martínez-Trujillo M
    Biometals; 2015 Apr; 28(2):353-65. PubMed ID: 25702099
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polar auxin transport--old questions and new concepts?
    Friml J; Palme K
    Plant Mol Biol; 2002; 49(3-4):273-84. PubMed ID: 12036254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Molecular Pinball Machine of the Plasma Membrane Regulates Plant Growth-A New Paradigm.
    Lamport DTA; Tan L; Kieliszewski MJ
    Cells; 2021 Jul; 10(8):. PubMed ID: 34440704
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular and cellular aspects of auxin-transport-mediated development.
    Vieten A; Sauer M; Brewer PB; Friml J
    Trends Plant Sci; 2007 Apr; 12(4):160-8. PubMed ID: 17369077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Internalizing to control , or how endocytosis regulates auxin flux in plants].
    Jaillais Y; Gaude T
    Med Sci (Paris); 2007 Feb; 23(2):117-9. PubMed ID: 17291414
    [No Abstract]   [Full Text] [Related]  

  • 59. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots.
    Bishopp A; Help H; El-Showk S; Weijers D; Scheres B; Friml J; Benková E; Mähönen AP; Helariutta Y
    Curr Biol; 2011 Jun; 21(11):917-26. PubMed ID: 21620702
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vesicular cycling mechanisms that control auxin transport polarity.
    Muday GK; Peer WA; Murphy AS
    Trends Plant Sci; 2003 Jul; 8(7):301-4. PubMed ID: 12878008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.