These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33760360)

  • 1. A machine learning-based survival prediction model of high grade glioma by integration of clinical and dose-volume histogram parameters.
    Chen H; Li C; Zheng L; Lu W; Li Y; Wei Q
    Cancer Med; 2021 Apr; 10(8):2774-2786. PubMed ID: 33760360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Carbon Ion Radiotherapy.
    Qiu X; Gao J; Yang J; Hu J; Hu W; Kong L; Lu JJ
    Front Oncol; 2020; 10():551420. PubMed ID: 33194609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction.
    Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK
    Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.
    Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS
    Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of treatment strategy by using a machine learning model to predict survival time of patients with malignant glioma after radiotherapy.
    Mizutani T; Magome T; Igaki H; Haga A; Nawa K; Sekiya N; Nakagawa K
    J Radiat Res; 2019 Nov; 60(6):818-824. PubMed ID: 31665445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BTK Expression Level Prediction and the High-Grade Glioma Prognosis Using Radiomic Machine Learning Models.
    Jiang C; Sun C; Wang X; Ma S; Jia W; Zhang D
    J Imaging Inform Med; 2024 Aug; 37(4):1359-1374. PubMed ID: 38381384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outcome Prediction for Patient with High-Grade Gliomas from Brain Functional and Structural Networks.
    Liu L; Zhang H; Rekik I; Chen X; Wang Q; Shen D
    Med Image Comput Comput Assist Interv; 2016 Oct; 9901():26-34. PubMed ID: 28649677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association between small heat shock protein B11 and the prognostic value of MGMT promoter methylation in patients with high-grade glioma.
    Cheng W; Li M; Jiang Y; Zhang C; Cai J; Wang K; Wu A
    J Neurosurg; 2016 Jul; 125(1):7-16. PubMed ID: 26544773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas.
    Zhou H; Chang K; Bai HX; Xiao B; Su C; Bi WL; Zhang PJ; Senders JT; Vallières M; Kavouridis VK; Boaro A; Arnaout O; Yang L; Huang RY
    J Neurooncol; 2019 Apr; 142(2):299-307. PubMed ID: 30661193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrast enhancement is a prognostic factor in IDH1/2 mutant, but not in wild-type WHO grade II/III glioma as confirmed by machine learning.
    Suchorska B; Schüller U; Biczok A; Lenski M; Albert NL; Giese A; Kreth FW; Ertl-Wagner B; Tonn JC; Ingrisch M
    Eur J Cancer; 2019 Jan; 107():15-27. PubMed ID: 30529899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting post-surgical functional status in high-grade glioma with resting state fMRI and machine learning.
    Luckett PH; Olufawo MO; Park KY; Lamichhane B; Dierker D; Verastegui GT; Lee JJ; Yang P; Kim A; Butt OH; Chheda MG; Snyder AZ; Shimony JS; Leuthardt EC
    J Neurooncol; 2024 Aug; 169(1):175-185. PubMed ID: 38789843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving survival prediction of high-grade glioma via machine learning techniques based on MRI radiomic, genetic and clinical risk factors.
    Tan Y; Mu W; Wang XC; Yang GQ; Gillies RJ; Zhang H
    Eur J Radiol; 2019 Nov; 120():108609. PubMed ID: 31606714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features.
    Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB
    Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging (MRI)-based intratumoral and peritumoral radiomics for prognosis prediction in glioma patients.
    Gao M; Cheng J; Qiu A; Zhao D; Wang J; Liu J
    Clin Radiol; 2024 Nov; 79(11):e1383-e1393. PubMed ID: 39218720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prognosis prediction of extremity and trunk wall soft-tissue sarcomas treated with surgical resection with radiomic analysis based on random survival forest.
    Yang Y; Ma X; Wang Y; Ding X
    Updates Surg; 2022 Feb; 74(1):355-365. PubMed ID: 34003477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks.
    Liu L; Zhang H; Wu J; Yu Z; Chen X; Rekik I; Wang Q; Lu J; Shen D
    Brain Imaging Behav; 2019 Oct; 13(5):1333-1351. PubMed ID: 30155788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and internal validation of machine learning models for personalized survival predictions in spinal cord glioma patients.
    Karabacak M; Schupper AJ; Carr MT; Bhimani AD; Steinberger J; Margetis K
    Spine J; 2024 Jun; 24(6):1065-1076. PubMed ID: 38365005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining MRI and Histologic Imaging Features for Predicting Overall Survival in Patients with Glioma.
    Rathore S; Chaddad A; Iftikhar MA; Bilello M; Abdulkadir A
    Radiol Imaging Cancer; 2021 Jul; 3(4):e200108. PubMed ID: 34296969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Genetic Profiles and Prognosis of High-Grade Gliomas Using Quantitative and Qualitative MRI Features: A Focus on G3 Gliomas.
    Hong EK; Choi SH; Shin DJ; Jo SW; Yoo RE; Kang KM; Yun TJ; Kim JH; Sohn CH; Park SH; Won JK; Kim TM; Park CK; Kim IH; Lee ST
    Korean J Radiol; 2021 Feb; 22(2):233-242. PubMed ID: 32932560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.