These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 33760401)

  • 1. Biomimetic Nanozymes Based on Coassembly of Amino Acid and Hemin for Catalytic Oxidation and Sensing of Biomolecules.
    Geng R; Chang R; Zou Q; Shen G; Jiao T; Yan X
    Small; 2021 May; 17(19):e2008114. PubMed ID: 33760401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Wool Keratin Derived Metallo-Nanozymes as a Robust Antioxidant Catalyst to Scavenge Reactive Oxygen Species Generated by Smoking.
    Xu F; Tang Y; Wang H; Deng H; Huang Y; Fan C; Zhao J; Lin C; Lin Y
    Small; 2022 Jun; 18(23):e2201205. PubMed ID: 35543499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic design for enhancing the peroxidase mimicking activity of hemin.
    Wu W; Wang Q; Chen J; Huang L; Zhang H; Rong K; Dong S
    Nanoscale; 2019 Jul; 11(26):12603-12609. PubMed ID: 31232410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytically active nanomaterials: a promising candidate for artificial enzymes.
    Lin Y; Ren J; Qu X
    Acc Chem Res; 2014 Apr; 47(4):1097-105. PubMed ID: 24437921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Imprinting on Nanozymes for Sensing Applications.
    Cardoso AR; Frasco MF; Serrano V; Fortunato E; Sales MGF
    Biosensors (Basel); 2021 May; 11(5):. PubMed ID: 34067985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme Mimic Based on a Self-Assembled Chitosan/DNA Hybrid Exhibits Superior Activity and Tolerance.
    Wang ZG; Li Y; Wang H; Wan K; Liu Q; Shi X; Ding B
    Chemistry; 2019 Sep; 25(54):12576-12582. PubMed ID: 31314132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimic Nanozymes with Tunable Peroxidase-like Activity Based on the Confinement Effect of Metal-Organic Frameworks (MOFs) for Biosensing.
    Zhu N; Liu C; Liu R; Niu X; Xiong D; Wang K; Yin D; Zhang Z
    Anal Chem; 2022 Mar; 94(11):4821-4830. PubMed ID: 35262349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembly and Compartmentalization of Nanozymes in Mesoporous Silica-Based Nanoreactors.
    Huang Y; Lin Y; Ran X; Ren J; Qu X
    Chemistry; 2016 Apr; 22(16):5705-11. PubMed ID: 26934043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Nanozymes: Engineered Gold Nanoparticles Exhibit Tunable Plasmon-Enhanced Peroxidase-Mimicking Activity.
    Zhang Y; Villarreal E; Li GG; Wang W; Wang H
    J Phys Chem Lett; 2020 Nov; 11(21):9321-9328. PubMed ID: 33089980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When Nanozymes Meet Single-Atom Catalysis.
    Jiao L; Yan H; Wu Y; Gu W; Zhu C; Du D; Lin Y
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2565-2576. PubMed ID: 31209985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical design of nanozymes for biomedical applications.
    Wei M; Lee J; Xia F; Lin P; Hu X; Li F; Ling D
    Acta Biomater; 2021 May; 126():15-30. PubMed ID: 33652165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-activated nanozymes: catalytic mechanisms and applications.
    Zhang J; Liu J
    Nanoscale; 2020 Feb; 12(5):2914-2923. PubMed ID: 31993620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of carbon dots as nanozymes to mediate redox biological processes.
    He Q; Zhang L
    J Mater Chem B; 2023 Jun; 11(23):5071-5082. PubMed ID: 37219483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-site encapsulating gold "nanowires" into hemin-coupled protein scaffolds through biomimetic assembly towards the nanocomposites with strong catalysis, electrocatalysis, and fluorescence properties.
    Li S; Zhang L; Jiang Y; Zhu S; Lv X; Duan Z; Wang H
    Nanoscale; 2017 Oct; 9(41):16005-16011. PubMed ID: 29022633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-organic framework based nanozymes: promising materials for biochemical analysis.
    Niu X; Li X; Lyu Z; Pan J; Ding S; Ruan X; Zhu W; Du D; Lin Y
    Chem Commun (Camb); 2020 Sep; 56(77):11338-11353. PubMed ID: 32909017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual-cell device designed as an oxidase mimic and its use for the study of oxidase-like nanozymes.
    Yang H; Xiao J; Shi J; Shu T; Su L; Lu Q; Zhang X
    Chem Commun (Camb); 2018 Jan; 54(7):818-820. PubMed ID: 29313051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications.
    Liang M; Yan X
    Acc Chem Res; 2019 Aug; 52(8):2190-2200. PubMed ID: 31276379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications.
    Liu B; Wang Y; Chen Y; Guo L; Wei G
    J Mater Chem B; 2020 Nov; 8(44):10065-10086. PubMed ID: 33078176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular co-assembly of multicomponent peptides for the generation of nanomaterials with improved peroxidase activities.
    Zhang Y; Li X
    J Mater Chem B; 2023 May; 11(17):3898-3906. PubMed ID: 37039513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living Brains.
    Cheng H; Zhang L; He J; Guo W; Zhou Z; Zhang X; Nie S; Wei H
    Anal Chem; 2016 May; 88(10):5489-97. PubMed ID: 27067749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.