These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33760577)

  • 41. Structural, Electrical, and Optical Properties of ZnO Film Used as Buffer Layer for CIGS Thin-Film Solar Cell.
    Choi EC; Cha JH; Jung DY; Hong B
    J Nanosci Nanotechnol; 2016 May; 16(5):5087-91. PubMed ID: 27483877
    [TBL] [Abstract][Full Text] [Related]  

  • 42. First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications.
    Nagoya A; Asahi R; Kresse G
    J Phys Condens Matter; 2011 Oct; 23(40):404203. PubMed ID: 21931185
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improvement in Sb
    Li G; Li Z; Liang X; Guo C; Shen K; Mai Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):828-834. PubMed ID: 30525397
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transparent Electrode and Buffer Layer Combination for Reducing Carrier Recombination and Optical Loss Realizing over a 22%-Efficient Cd-Free Alkaline-Treated Cu(In,Ga)(S,Se)
    Chantana J; Kawano Y; Nishimura T; Kimoto Y; Kato T; Sugimoto H; Minemoto T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22298-22307. PubMed ID: 32320201
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Waste- and Cd-Free Inkjet-Printed Zn(O,S) Buffer for Cu(In,Ga)(S,Se)
    Chu VB; Siopa D; Debot A; Adeleye D; Sood M; Lomuscio A; Melchiorre M; Guillot J; Valle N; El Adib B; Rommelfangen J; Dale PJ
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13009-13021. PubMed ID: 33689261
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy.
    Klein A
    J Phys Condens Matter; 2015 Apr; 27(13):134201. PubMed ID: 25767081
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tailoring Photoelectrochemical Performance and Stability of Cu(In,Ga)Se
    Koo B; Nam SW; Haight R; Kim S; Oh S; Cho M; Oh J; Lee JY; Ahn BT; Shin B
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5279-5287. PubMed ID: 28124554
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cu(In,Ga)Se
    Koida T; Ueno Y; Nishinaga J; Higuchi H; Takahashi H; Iioka M; Shibata H; Niki S
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29677-29686. PubMed ID: 28828852
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells.
    Chirilă A; Reinhard P; Pianezzi F; Bloesch P; Uhl AR; Fella C; Kranz L; Keller D; Gretener C; Hagendorfer H; Jaeger D; Erni R; Nishiwaki S; Buecheler S; Tiwari AN
    Nat Mater; 2013 Dec; 12(12):1107-11. PubMed ID: 24185758
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimization of CdS Buffer Layer for High Efficiency CIGS Solar Cells.
    Kim D; Jang YJ; Jung HS; Kim M; Baek D; Yi J; Lee J; Choi Y
    J Nanosci Nanotechnol; 2016 May; 16(5):5074-7. PubMed ID: 27483874
    [TBL] [Abstract][Full Text] [Related]  

  • 51. First-principles insights into the electronic structure, optical and band alignment properties of earth-abundant Cu
    Dzade NY
    Sci Rep; 2021 Feb; 11(1):4755. PubMed ID: 33637815
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Growth-Promoting Mechanism of Bismuth-Doped Cu(In,Ga)Se
    Zeng L; Zhang L; Liang Y; Zeng C; Qiu Z; Lin H; Hong R
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35544602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improvement of the Electrical Properties of a Cu(In,Ga)Se₂ Solar Cell Based on a ZnS Buffer Layer from Radio Frequency Magnetron Sputtering.
    Kim HS; Kim G; Kim E; Cho SJ; Lee DJ; Choi SG; Shan F; Kim SJ
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1799-1803. PubMed ID: 30469270
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct Synthesis and Enhanced Rectification of Alloy-to-Alloy 2D Type-II MoS
    Wang X; Pan L; Yang J; Li B; Liu YY; Wei Z
    Adv Mater; 2021 Feb; 33(8):e2006908. PubMed ID: 33448082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Achieving over 15% Efficiency in Solution-Processed Cu(In,Ga)(S,Se)
    Kim DS; Park GS; Kim B; Bae S; Park SY; Oh HS; Lee U; Ko DH; Kim J; Min BK
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13289-13300. PubMed ID: 33689281
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Non-antireflective scheme for efficiency enhancement of Cu(In,Ga)Se2 nanotip array solar cells.
    Liao YK; Wang YC; Yen YT; Chen CH; Hsieh DH; Chen SC; Lee CY; Lai CC; Kuo WC; Juang JY; Wu KH; Cheng SJ; Lai CH; Lai FI; Kuo SY; Kuo HC; Chueh YL
    ACS Nano; 2013 Aug; 7(8):7318-29. PubMed ID: 23906340
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ZnS
    Zhang L; Rao H; Pan Z; Zhong X
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41415-41423. PubMed ID: 31613581
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Over 16% Efficient Solution-Processed Cu(In,Ga)Se
    Gao Q; Yuan S; Zhou Z; Kou D; Zhou W; Meng Y; Qi Y; Han L; Wu S
    Small; 2022 Sep; 18(39):e2203443. PubMed ID: 36026573
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interface Formation between CdS and Alkali Postdeposition-Treated Cu(In,Ga)Se
    Yang P; Wilks RG; Yang W; Bär M
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6688-6698. PubMed ID: 31912731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New insights into the Mo/Cu(In,Ga)Se
    Klinkert T; Theys B; Patriarche G; Jubault M; Donsanti F; Guillemoles JF; Lincot D
    J Chem Phys; 2016 Oct; 145(15):154702. PubMed ID: 27782451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.