These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 33760838)
1. Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. Polenogova OV; Noskov YA; Yaroslavtseva ON; Kryukova NA; Alikina T; Klementeva TN; Andrejeva J; Khodyrev VP; Kabilov MR; Kryukov VY; Glupov VV PLoS One; 2021; 16(3):e0248704. PubMed ID: 33760838 [TBL] [Abstract][Full Text] [Related]
2. Citrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis. Polenogova OV; Noskov YA; Artemchenko AS; Zhangissina S; Klementeva TN; Yaroslavtseva ON; Khodyrev VP; Kruykova NA; Glupov VV Pest Manag Sci; 2022 Sep; 78(9):3823-3835. PubMed ID: 35238478 [TBL] [Abstract][Full Text] [Related]
3. Silencing of an ABC transporter, but not a cadherin, decreases the susceptibility of Colorado potato beetle larvae to Bacillus thuringiensis ssp. tenebrionis Cry3Aa toxin. Güney G; Cedden D; Hänniger S; Heckel DG; Coutu C; Hegedus DD; Mutlu DA; Suludere Z; Sezen K; Güney E; Toprak U Arch Insect Biochem Physiol; 2021 Oct; 108(2):e21834. PubMed ID: 34288075 [TBL] [Abstract][Full Text] [Related]
8. Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management. Patil CD; Borase HP; Salunke BK; Patil SV Parasitol Res; 2013 Sep; 112(9):3283-8. PubMed ID: 23820604 [TBL] [Abstract][Full Text] [Related]
9. Immune-physiological aspects of synergy between avermectins and the entomopathogenic fungus Metarhizium robertsii in Colorado potato beetle larvae. Tomilova OG; Kryukov VY; Duisembekov BA; Yaroslavtseva ON; Tyurin MV; Kryukova NA; Skorokhod V; Dubovskiy IM; Glupov VV J Invertebr Pathol; 2016 Oct; 140():8-15. PubMed ID: 27546865 [TBL] [Abstract][Full Text] [Related]
10. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. Loseva O; Ibrahim M; Candas M; Koller CN; Bauer LS; Bulla LA Insect Biochem Mol Biol; 2002 May; 32(5):567-77. PubMed ID: 11891133 [TBL] [Abstract][Full Text] [Related]
11. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
12. Colorado potato beetle (Coleoptera: Chrysomelidae) feeding, development, and survival to adulthood after continuous exposure to Bacillus thuringiensis subsp. tenebrionis-treated potato foliage from the field. Nault BA; Costa SD; Kennedy GG J Econ Entomol; 2000 Feb; 93(1):149-56. PubMed ID: 14658525 [TBL] [Abstract][Full Text] [Related]
13. Inheritance of resistance to Bacillus thuringiensis subsp. tenebrionis CryIIIA delta-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae). Rahardja U; Whalon ME J Econ Entomol; 1995 Feb; 88(1):21-6. PubMed ID: 7884077 [TBL] [Abstract][Full Text] [Related]
14. Botanical insecticides for controlling agricultural pests: piperamides and the Colorado Potato Beetle Leptinotarsa decemlineata say (Coleoptera: Chrysomelidae). Scott IM; Jensen H; Scott JG; Isman MB; Arnason JT; Philogène BJ Arch Insect Biochem Physiol; 2003 Dec; 54(4):212-25. PubMed ID: 14635182 [TBL] [Abstract][Full Text] [Related]
15. [Synergistic action of entomopathogenic hyphomycetes and the bacteria Bacillus thuringiensis ssp. morrisoni in the infection of Colorado potato beetle Leptinotarsa decemlineata]. Kriukov VIu; Khodyrev VP; Iaroslavtseva ON; Kamenova AS; Duĭsembekov BA; Glupov VV Prikl Biokhim Mikrobiol; 2009; 45(5):571-6. PubMed ID: 19845290 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of natural and engineered resistance mechanisms in potato against Colorado potato beetle in a no-choice field study. Cooper SG; Douches DS; Coombs JJ; Grafius EJ J Econ Entomol; 2007 Apr; 100(2):573-9. PubMed ID: 17461085 [TBL] [Abstract][Full Text] [Related]
17. Insecticidal activity of avidin combined with genetically engineered and traditional host plant resistance against Colorado potato beetle (Coleoptera: Chrysomelidae) larvae. Cooper SG; Douches DS; Grafius EJ J Econ Entomol; 2006 Apr; 99(2):527-36. PubMed ID: 16686156 [TBL] [Abstract][Full Text] [Related]
18. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. Raymond B; Sayyed AH; Wright DJ J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146 [TBL] [Abstract][Full Text] [Related]
19. [Advances in receptor-mediated resistance mechanisms of Lepidopteran insects to Liu L; Xu P; Liu K; Wei W; Chang Z; Cheng D Sheng Wu Gong Cheng Xue Bao; 2022 May; 38(5):1809-1823. PubMed ID: 35611730 [No Abstract] [Full Text] [Related]
20. Bacterial and fungal infections induce bursts of dopamine in the haemolymph of the Colorado potato beetle Leptinotarsa decemlineata and greater wax moth Galleria mellonella. Chertkova EA; Grizanova EV; Dubovskiy IM J Invertebr Pathol; 2018 Mar; 153():203-206. PubMed ID: 29501498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]