These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 33761080)
1. Assessment of groundwater vulnerability using genetic algorithm and random forest methods (case study: Miandoab plain, NW of Iran). Norouzi H; Moghaddam AA; Celico F; Shiri J Environ Sci Pollut Res Int; 2021 Aug; 28(29):39598-39613. PubMed ID: 33761080 [TBL] [Abstract][Full Text] [Related]
2. Delimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworks. Barzegar R; Asghari Moghaddam A; Adamowski J; Nazemi AH Environ Sci Pollut Res Int; 2019 Mar; 26(8):8325-8339. PubMed ID: 30706265 [TBL] [Abstract][Full Text] [Related]
3. DRASTIC framework improvement using Stepwise Weight Assessment Ratio Analysis (SWARA) and combination of Genetic Algorithm and Entropy. Torkashvand M; Neshat A; Javadi S; Yousefi H Environ Sci Pollut Res Int; 2021 Sep; 28(34):46704-46724. PubMed ID: 33201500 [TBL] [Abstract][Full Text] [Related]
5. Mapping specific vulnerability of multiple confined and unconfined aquifers by using artificial intelligence to learn from multiple DRASTIC frameworks. Nadiri AA; Sedghi Z; Khatibi R; Sadeghfam S J Environ Manage; 2018 Dec; 227():415-428. PubMed ID: 30218838 [TBL] [Abstract][Full Text] [Related]
6. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Wang J; He J; Chen H Sci Total Environ; 2012 Aug; 432():216-26. PubMed ID: 22750168 [TBL] [Abstract][Full Text] [Related]
7. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model. Sadat-Noori M; Ebrahimi K Environ Monit Assess; 2016 Jan; 188(1):19. PubMed ID: 26650205 [TBL] [Abstract][Full Text] [Related]
8. Implementation and evaluation of different techniques to modify DRASTIC method for groundwater vulnerability assessment: a case study from Bouficha aquifer, Tunisia. Siarkos I; Arfaoui M; Tzoraki O; Zammouri M; Hamzaoui-Azaza F Environ Sci Pollut Res Int; 2023 Aug; 30(38):89459-89478. PubMed ID: 37453015 [TBL] [Abstract][Full Text] [Related]
9. Assessing groundwater vulnerability potential using modified DRASTIC in Ajabshir Plain, NW of Iran. Asghari Moghaddam A; Nouri Sangarab S; Kadkhodaie Ilkhchi A Environ Monit Assess; 2023 Mar; 195(4):497. PubMed ID: 36947260 [TBL] [Abstract][Full Text] [Related]
10. Progressive improvement of DRASTICA and SI models for groundwater vulnerability assessment based on evolutionary algorithms. Zare M; Nikoo MR; Nematollahi B; Gandomi AH; Al-Wardy M; Al-Rawas GA Environ Sci Pollut Res Int; 2022 Aug; 29(37):55845-55865. PubMed ID: 35320481 [TBL] [Abstract][Full Text] [Related]
11. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Rodriguez-Galiano V; Mendes MP; Garcia-Soldado MJ; Chica-Olmo M; Ribeiro L Sci Total Environ; 2014 Apr; 476-477():189-206. PubMed ID: 24463255 [TBL] [Abstract][Full Text] [Related]
12. Groundwater vulnerability mapping using the modified DRASTIC model: the metaheuristic algorithm approach. L B; R S; K S; N A S Environ Monit Assess; 2021 Jan; 193(1):25. PubMed ID: 33389229 [TBL] [Abstract][Full Text] [Related]
13. Reciprocal analysis of groundwater potentiality and vulnerability modeling in the Bahabad Plain, Iran. Atashi Yazdi SS; Motamedvaziri B; Hosseini SZ; Ahmadi H Environ Sci Pollut Res Int; 2023 Mar; 30(14):39586-39604. PubMed ID: 36596973 [TBL] [Abstract][Full Text] [Related]
14. ANFIS-MOA models for the assessment of groundwater contamination vulnerability in a nitrate contaminated area. Elzain HE; Chung SY; Park KH; Senapathi V; Sekar S; Sabarathinam C; Hassan M J Environ Manage; 2021 May; 286():112162. PubMed ID: 33636625 [TBL] [Abstract][Full Text] [Related]
15. Groundwater vulnerability assessment using the GALDIT model and the improved DRASTIC model: a case in Weibei Plain, China. Hu X; Ma C; Qi H; Guo X Environ Sci Pollut Res Int; 2018 Nov; 25(32):32524-32539. PubMed ID: 30238262 [TBL] [Abstract][Full Text] [Related]
16. Assessment and validation of groundwater vulnerability to nitrate in porous aquifers based on a DRASTIC method modified by projection pursuit dynamic clustering model. Jia Z; Bian J; Wang Y; Wan H; Sun X; Li Q J Contam Hydrol; 2019 Oct; 226():103522. PubMed ID: 31301548 [TBL] [Abstract][Full Text] [Related]
17. A hybrid statistical decision-making optimization approach for groundwater vulnerability considering uncertainty. Gharakezloo YN; Nikoo MR; Karimi-Jashni A; Mooselu MG Environ Sci Pollut Res Int; 2022 Feb; 29(6):8597-8612. PubMed ID: 34490577 [TBL] [Abstract][Full Text] [Related]
18. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. Baghapour MA; Fadaei Nobandegani A; Talebbeydokhti N; Bagherzadeh S; Nadiri AA; Gharekhani M; Chitsazan N J Environ Health Sci Eng; 2016; 14():13. PubMed ID: 27508082 [TBL] [Abstract][Full Text] [Related]
19. Incorporating hydraulic gradient and pumping rate into GALDIT framework to assess groundwater vulnerability to salinity in coastal aquifers: a case study from Urmia Plain, Iran. Fakhri M; Moghaddam AA; Nadiri AA; Barzegar R; Cloutier V Environ Sci Pollut Res Int; 2024 Aug; 31(38):50576-50594. PubMed ID: 39103581 [TBL] [Abstract][Full Text] [Related]
20. Developing a SINTACS-based method to map groundwater multi-pollutant vulnerability using evolutionary algorithms. Jahromi MN; Gomeh Z; Busico G; Barzegar R; Samany NN; Aalami MT; Tedesco D; Mastrocicco M; Kazakis N Environ Sci Pollut Res Int; 2021 Feb; 28(7):7854-7869. PubMed ID: 33040292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]