These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33761338)

  • 1. Formation of naphthoquinones and anthraquinones by carbonyl-hydroquinone/benzoquinone reactions: A potential route for the origin of 9,10-anthraquinone in tea.
    Zamora R; Hidalgo FJ
    Food Chem; 2021 Aug; 354():129530. PubMed ID: 33761338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligomerization of reactive carbonyls in the presence of ammonia-producing compounds: A route for the production of pyridines in foods.
    Zamora R; Lavado-Tena CM; Hidalgo FJ
    Food Chem; 2020 Jan; 304():125284. PubMed ID: 31476546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activated Carbon-Promoted Dehydrogenation of Hydroquinones to Benzoquinones, Naphthoquinones, and Anthraquinones under Molecular Oxygen Atmosphere.
    Kim S; Matsubara R; Hayashi M
    J Org Chem; 2019 Mar; 84(5):2997-3003. PubMed ID: 30730743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced reactions of para-quinones with bicyclopropylidene leading to diverse polycyclic compounds with spirocyclopropanes.
    Wang W; Zhang WJ; Wang L; Quah CK; Fun HK; Xu JH; Zhang Y
    J Org Chem; 2013 Jun; 78(12):6211-22. PubMed ID: 23692405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of phenazines, phenoxazines, and benzoxazoles in the browning reactions of o-quinones.
    Zamora R; Hidalgo FJ
    Food Chem; 2024 Jul; 445():138710. PubMed ID: 38364493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoreactions of p-benzo-, p-naphtho- and p-anthraquinones with ascorbic acid.
    Görner H
    Photochem Photobiol Sci; 2004 Oct; 3(10):933-8. PubMed ID: 15480484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive carbonyls and the formation of the heterocyclic aromatic amine 2-amino-3,4-dimethylimidazo(4,5-f)quinoline (MeIQ).
    Zamora R; Lavado-Tena CM; Hidalgo FJ
    Food Chem; 2020 Sep; 324():126898. PubMed ID: 32361096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of 3-hydroxypyridines by lipid oxidation products in the presence of ammonia and ammonia-producing compounds.
    Hidalgo FJ; Lavado-Tena CM; Zamora R
    Food Chem; 2020 Oct; 328():127100. PubMed ID: 32464558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids.
    Delgado RM; Hidalgo FJ; Zamora R
    Food Chem; 2016 Mar; 194():1143-8. PubMed ID: 26471665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonyl-trapping abilities of 5-alkylresorcinols.
    Zamora R; Hidalgo FJ
    Food Chem; 2022 Nov; 393():133372. PubMed ID: 35661596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases.
    Demir Y
    Drug Dev Res; 2020 Aug; 81(5):628-636. PubMed ID: 32232985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of acrolein as the reactive carbonyl responsible for the formation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx).
    Hidalgo FJ; Lavado-Tena CM; Zamora R
    Food Chem; 2021 May; 343():128478. PubMed ID: 33158682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of anthraquinone, benzoquinone, hydroquinone and resorcinol on the hydrolysis of casein by papain.
    BAHADUR K; ATREYA BD
    Enzymologia; 1960 Jan; 21():238-44. PubMed ID: 13795781
    [No Abstract]   [Full Text] [Related]  

  • 14. Reactions of glutathione and glutathione radicals with benzoquinones.
    Butler J; Hoey BM
    Free Radic Biol Med; 1992; 12(5):337-45. PubMed ID: 1592273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of benzoquinones to hydroquinones via spontaneous reaction with glutathione and enzymatic reaction by S-glutathionyl-hydroquinone reductases.
    Lam LK; Zhang Z; Board PG; Xun L
    Biochemistry; 2012 Jun; 51(25):5014-21. PubMed ID: 22686328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer of quinone self-assembled monolayers on a gold electrode.
    Nagata M; Kondo M; Suemori Y; Ochiai T; Dewa T; Ohtsuka T; Nango M
    Colloids Surf B Biointerfaces; 2008 Jun; 64(1):16-21. PubMed ID: 18282692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of selected benzoquinones, naphthoquinones, and anthraquinones as replacements for phylloquinone in the A1 acceptor site of the photosystem I reaction center.
    Biggins J
    Biochemistry; 1990 Aug; 29(31):7259-64. PubMed ID: 2207105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenolic trapping of lipid oxidation products 4-oxo-2-alkenals.
    Hidalgo FJ; Aguilar I; Zamora R
    Food Chem; 2018 Feb; 240():822-830. PubMed ID: 28946347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transfer from aromatic amino acids to triplet quinones.
    Görner H
    J Photochem Photobiol B; 2007 Sep; 88(2-3):83-9. PubMed ID: 17604179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach to evaluating the extent of Michael adduct formation to PAH quinones: tetramethylammonium hydroxide (TMAH) thermochemolysis with GC/MS.
    Briggs MK; Desavis E; Mazzer PA; Sunoj RB; Hatcher SA; Hadad CM; Hatcher PG
    Chem Res Toxicol; 2003 Nov; 16(11):1484-92. PubMed ID: 14615976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.