These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33761486)

  • 1. Simulation tool for predicting and optimizing the performance of nanoparticle based strain sensors.
    Aslanidis E; Skotadis E; Tsoukalas D
    Nanotechnology; 2021 Apr; 32(27):. PubMed ID: 33761486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin Film Protected Flexible Nanoparticle Strain Sensors: Experiments and Modeling.
    Aslanidis E; Skotadis E; Moutoulas E; Tsoukalas D
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32370042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors.
    Jiang Y; Liu Z; Wang C; Chen X
    Acc Chem Res; 2019 Jan; 52(1):82-90. PubMed ID: 30586278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable Nanocomposite Sensors, Nanomembrane Interconnectors, and Wireless Electronics toward Feedback-Loop Control of a Soft Earthworm Robot.
    Goldoni R; Ozkan-Aydin Y; Kim YS; Kim J; Zavanelli N; Mahmood M; Liu B; Hammond FL; Goldman DI; Yeo WH
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43388-43397. PubMed ID: 32791828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors.
    Wang Z; Cong Y; Fu J
    J Mater Chem B; 2020 Apr; 8(16):3437-3459. PubMed ID: 32100788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable Fabrication of Percolative Metal Nanoparticle Arrays Applied for Quantum Conductance-Based Strain Sensors.
    Du Z; Chen J; Liu C; Jin C; Han M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33137978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical Considerations in the Rational Design and Cellular Targeting of Flexible Polymeric Nanoparticles.
    Farokhirad S; Kandy SK; Tsourkas A; Ayyaswamy PS; Eckmann DM; Radhakrishnan R
    Adv Mater Interfaces; 2021 Dec; 8(23):. PubMed ID: 35782961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive and flexible strain sensors based on patterned ITO nanoparticle channels.
    Lee DH; Park J; Lee JK; Heo K; Lee DJ; Lee YR; Lee BY
    Nanotechnology; 2017 Dec; 28(49):495501. PubMed ID: 28994398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated quantitative image analysis of nanoparticle assembly.
    Murthy CR; Gao B; Tao AR; Arya G
    Nanoscale; 2015 Jun; 7(21):9793-805. PubMed ID: 25963444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Electrical Percolation to optimize the Electromechanical Properties of CNT/Polymer Composites in Highly Stretchable Fiber Strain Sensors.
    Jung S; Choi HW; Mocanu FC; Shin DW; Chowdhury MF; Han SD; Suh YH; Cho Y; Lee H; Fan X; Bang SY; Zhan S; Yang J; Hou B; Chun YT; Lee S; Occhipinti LG; Kim JM
    Sci Rep; 2019 Dec; 9(1):20376. PubMed ID: 31889155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Material approaches to stretchable strain sensors.
    Park J; You I; Shin S; Jeong U
    Chemphyschem; 2015 Apr; 16(6):1155-63. PubMed ID: 25641620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive and Stretchable Conductive Fibers Using Percolated Pd Nanoparticle Networks for Multisensing Wearable Electronics: Crack-Based Strain and H
    Won C; Lee S; Jung HH; Woo J; Yoon K; Lee J; Kwon C; Lee M; Han H; Mei Y; Jang KI; Lee T
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45243-45253. PubMed ID: 32893618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future.
    Tee BCK; Ouyang J
    Adv Mater; 2018 Nov; 30(47):e1802560. PubMed ID: 30101469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strengthened, Antibacterial, and Conductive Flexible Film for Humidity and Strain Sensors.
    Xu C; Zheng Z; Lin M; Shen Q; Wang X; Lin B; Fu L
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35482-35492. PubMed ID: 32686931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
    Li T; Li Y; Zhang T
    Acc Chem Res; 2019 Feb; 52(2):288-296. PubMed ID: 30653299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of nanoparticle heteroaggregation attachment efficiencies and rates in presence of natural organic matter monomers. Monte Carlo modelling.
    Clavier A; Praetorius A; Stoll S
    Sci Total Environ; 2019 Feb; 650(Pt 1):530-540. PubMed ID: 30205343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection.
    Lee J; Kim S; Lee J; Yang D; Park BC; Ryu S; Park I
    Nanoscale; 2014 Oct; 6(20):11932-9. PubMed ID: 25175360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo dosimetry modeling of focused kV x-ray radiotherapy of eye diseases with potential nanoparticle dose enhancement.
    Yan H; Ma X; Sun W; Mendez S; Stryker S; Starr-Baier S; Delliturri G; Zhu D; Nath R; Chen Z; Roberts K; MacDonald CA; Liu W
    Med Phys; 2018 Oct; 45(10):4720-4733. PubMed ID: 30133705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretchable and Highly Sensitive Optical Strain Sensors for Human-Activity Monitoring and Healthcare.
    Guo J; Zhou B; Zong R; Pan L; Li X; Yu X; Yang C; Kong L; Dai Q
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33589-33598. PubMed ID: 31464425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation.
    Liu HH; Surawanvijit S; Rallo R; Orkoulas G; Cohen Y
    Environ Sci Technol; 2011 Nov; 45(21):9284-92. PubMed ID: 21916459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.