These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 33761636)

  • 1. The identification of neutrophils-mediated mechanisms and potential therapeutic targets for the management of sepsis-induced acute immunosuppression using bioinformatics.
    Chen F; Yao C; Feng Y; Yu Y; Guo H; Yan J; Chen J
    Medicine (Baltimore); 2021 Mar; 100(12):e24669. PubMed ID: 33761636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of key pathogenic genes of sepsis based on the Gene Expression Omnibus database.
    Lu X; Xue L; Sun W; Ye J; Zhu Z; Mei H
    Mol Med Rep; 2018 Feb; 17(2):3042-3054. PubMed ID: 29257295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatics Analysis for Multiple Gene Expression Profiles in Sepsis.
    Zhai J; Qi A; Zhang Y; Jiao L; Liu Y; Shou S
    Med Sci Monit; 2020 Apr; 26():e920818. PubMed ID: 32280132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Potential Risk Genes and the Immune Landscape of Idiopathic Pulmonary Arterial Hypertension via Microarray Gene Expression Dataset Reanalysis.
    Xu J; Yang Y; Yang Y; Xiong C
    Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33478117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Sepsis Markers and Pathogenesis Based on Gene Differential Expression and Protein Interaction Network.
    Liang J; Wu W; Wang X; Wu W; Chen S; Jiang M
    J Healthc Eng; 2022; 2022():6878495. PubMed ID: 35190763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex Difference of Ribosome in Stroke-Induced Peripheral Immunosuppression by Integrated Bioinformatics Analysis.
    Xie JQ; Lu YP; Sun HL; Gao LN; Song PP; Feng ZJ; You CG
    Biomed Res Int; 2020; 2020():3650935. PubMed ID: 33354565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network analysis of inflammatory responses to sepsis by neutrophils and peripheral blood mononuclear cells.
    Godini R; Fallahi H; Ebrahimie E
    PLoS One; 2018; 13(8):e0201674. PubMed ID: 30086151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Analysis of Common Different Gene Expression Signatures in the Neutrophils of Sepsis.
    Liu Z; Chen Y; Pan T; Liu J; Tian R; Sun S; Qu H; Chen E
    Biomed Res Int; 2021; 2021():6655425. PubMed ID: 33959663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of differentially expressed genes, transcription factors, microRNAs and pathways in neutrophils of sepsis patients through bioinformatics analysis.
    Zheng Y; Peng L; He Z; Zou Z; Li F; Huang C; Li W
    Cell Mol Biol (Noisy-le-grand); 2022 Feb; 67(5):405-420. PubMed ID: 35818227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of hub genes, pathways, and related transcription factors in systemic lupus erythematosus: A preliminary bioinformatics analysis.
    Wang Y; Ma Q; Huo Z
    Medicine (Baltimore); 2021 Jun; 100(25):e26499. PubMed ID: 34160465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of key genes as potential diagnostic biomarkers in sepsis by bioinformatics analysis.
    Lin G; Li N; Liu J; Sun J; Zhang H; Gui M; Zeng Y; Tang J
    PeerJ; 2024; 12():e17542. PubMed ID: 38912048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.
    Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y
    J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Identification of differentially expressed genes and pathways changing in neutrophils of patients with sepsis by bioinformatics analysis].
    He C; Zhang Y; Duan Y; Yu J; Luo B; Jiang N; Liang Y; Zeng J; Zheng X; Xian Y
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2019 Jun; 35(6):481-490. PubMed ID: 31292051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics Analysis of Gene Expression Profiles for Risk Prediction in Patients with Septic Shock.
    Hu Y; Cheng L; Zhong W; Chen M; Zhang Q
    Med Sci Monit; 2019 Dec; 25():9563-9571. PubMed ID: 31838482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
    Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K
    Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of immune features of HIV-infected patients with antiretroviral therapy through bioinformatics analysis.
    Zhang Z; Zhang L; Shen Y
    Virology; 2022 Jan; 566():69-74. PubMed ID: 34875552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinformatics analysis of key genes and pathways in Hashimoto thyroiditis tissues.
    Zheng L; Dou X; Song H; Wang P; Qu W; Zheng X
    Biosci Rep; 2020 Jul; 40(7):. PubMed ID: 32662826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of key genes and pathways associated with classical Hodgkin lymphoma by bioinformatics analysis.
    Kuang Z; Guo L; Li X
    Mol Med Rep; 2017 Oct; 16(4):4685-4693. PubMed ID: 28791394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatics Analysis Identifies Hub Genes and Molecular Pathways Involved in Sepsis-Induced Myopathy.
    Ning YL; Yang ZQ; Xian SX; Lin JZ; Lin XF; Chen WT
    Med Sci Monit; 2020 Feb; 26():e919665. PubMed ID: 32008037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.