These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 33762315)
21. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection. Reeves AE; Theriot CM; Bergin IL; Huffnagle GB; Schloss PD; Young VB Gut Microbes; 2011; 2(3):145-58. PubMed ID: 21804357 [TBL] [Abstract][Full Text] [Related]
23. Symbiotic biofilms formed by Yang J; Rui W; Zhong S; Li X; Liu W; Meng L; Li Y; Huang H Gut Microbes; 2024; 16(1):2390133. PubMed ID: 39132815 [TBL] [Abstract][Full Text] [Related]
24. Unravelling the collateral damage of antibiotics on gut bacteria. Maier L; Goemans CV; Wirbel J; Kuhn M; Eberl C; Pruteanu M; Müller P; Garcia-Santamarina S; Cacace E; Zhang B; Gekeler C; Banerjee T; Anderson EE; Milanese A; Löber U; Forslund SK; Patil KR; Zimmermann M; Stecher B; Zeller G; Bork P; Typas A Nature; 2021 Nov; 599(7883):120-124. PubMed ID: 34646011 [TBL] [Abstract][Full Text] [Related]
26. 2'-Fucosyllactose inhibits proliferation of Wiese M; Schuren FHJ; Smits WK; Kuijper EJ; Ouwens A; Heerikhuisen M; Vigsnaes L; van den Broek TJ; de Boer P; Montijn RC; van der Vossen JMBM Front Cell Infect Microbiol; 2022; 12():991150. PubMed ID: 36389156 [TBL] [Abstract][Full Text] [Related]
27. Interactions Between the Gastrointestinal Microbiome and Clostridium difficile. Theriot CM; Young VB Annu Rev Microbiol; 2015; 69():445-61. PubMed ID: 26488281 [TBL] [Abstract][Full Text] [Related]
28. Pre-colonization with the fungus Romo JA; Tomihiro M; Kumamoto CA mSphere; 2023 Aug; 8(4):e0012223. PubMed ID: 37358292 [TBL] [Abstract][Full Text] [Related]
29. Bacteroides and related species: The keystone taxa of the human gut microbiota. Shin JH; Tillotson G; MacKenzie TN; Warren CA; Wexler HM; Goldstein EJC Anaerobe; 2024 Feb; 85():102819. PubMed ID: 38215933 [TBL] [Abstract][Full Text] [Related]
30. Bacterial community dynamics as a result of growth-yield trade-off and multispecies metabolic interactions toward understanding the gut biofilm niche. Valiei A; Dickson AM; Aminian-Dehkordi J; Mofrad MRK BMC Microbiol; 2024 Oct; 24(1):441. PubMed ID: 39472801 [TBL] [Abstract][Full Text] [Related]
31. The Role of the Gut Microbiome in Cancer: A Review, With Special Focus on Colorectal Neoplasia and Clostridioides difficile. Anderson SM; Sears CL Clin Infect Dis; 2023 Dec; 77(Suppl 6):S471-S478. PubMed ID: 38051969 [TBL] [Abstract][Full Text] [Related]
32. Identification of Clostridioides difficile-Inhibiting Gut Commensals Using Culturomics, Phenotyping, and Combinatorial Community Assembly. Ghimire S; Roy C; Wongkuna S; Antony L; Maji A; Keena MC; Foley A; Scaria J mSystems; 2020 Feb; 5(1):. PubMed ID: 32019832 [TBL] [Abstract][Full Text] [Related]
33. Strain-Dependent Inhibition of Clostridioides difficile by Commensal Reed AD; Nethery MA; Stewart A; Barrangou R; Theriot CM J Bacteriol; 2020 May; 202(11):. PubMed ID: 32179626 [No Abstract] [Full Text] [Related]
34. Response of the gut microbiota during the Clostridioides difficile infection in tree shrews mimics those in humans. Gu W; Li W; Wang W; Kuang D; Zhang W; Lu C; Li N; Tong P; Han Y; Sun X; Lu J; Wu Y; Dai J BMC Microbiol; 2020 Aug; 20(1):260. PubMed ID: 32819295 [TBL] [Abstract][Full Text] [Related]
35. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nagao-Kitamoto H; Leslie JL; Kitamoto S; Jin C; Thomsson KA; Gillilland MG; Kuffa P; Goto Y; Jenq RR; Ishii C; Hirayama A; Seekatz AM; Martens EC; Eaton KA; Kao JY; Fukuda S; Higgins PDR; Karlsson NG; Young VB; Kamada N Nat Med; 2020 Apr; 26(4):608-617. PubMed ID: 32066975 [TBL] [Abstract][Full Text] [Related]
36. Intestinal Inflammation and Altered Gut Microbiota Associated with Inflammatory Bowel Disease Render Mice Susceptible to Clostridioides difficile Colonization and Infection. Abernathy-Close L; Barron MR; George JM; Dieterle MG; Vendrov KC; Bergin IL; Young VB mBio; 2021 Jun; 12(3):e0273320. PubMed ID: 34126769 [TBL] [Abstract][Full Text] [Related]
38. Neonatal Piglets Are Protected from Clostridioides difficile Infection by Age-Dependent Increase in Intestinal Microbial Diversity. Proctor A; Cornick NA; Wang C; Mooyottu S; Arruda PA; Kobs K; Phillips GJ Microbiol Spectr; 2021 Oct; 9(2):e0124321. PubMed ID: 34550001 [TBL] [Abstract][Full Text] [Related]
39. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Mullish BH; McDonald JAK; Pechlivanis A; Allegretti JR; Kao D; Barker GF; Kapila D; Petrof EO; Joyce SA; Gahan CGM; Glegola-Madejska I; Williams HRT; Holmes E; Clarke TB; Thursz MR; Marchesi JR Gut; 2019 Oct; 68(10):1791-1800. PubMed ID: 30816855 [TBL] [Abstract][Full Text] [Related]
40. Quantitative characterization of Clostridioides difficile population in the gut microbiome of patients with C. difficile infection and their association with clinical factors. Kim J; Cho Y; Seo MR; Bae MH; Kim B; Rho M; Pai H Sci Rep; 2020 Oct; 10(1):17608. PubMed ID: 33077744 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]