These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 33762679)

  • 61. Host-induced gene silencing - mechanisms and applications.
    Koch A; Wassenegger M
    New Phytol; 2021 Jul; 231(1):54-59. PubMed ID: 33774815
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles.
    Cai Q; He B; Wang S; Fletcher S; Niu D; Mitter N; Birch PRJ; Jin H
    Annu Rev Plant Biol; 2021 Jun; 72():497-524. PubMed ID: 34143650
    [TBL] [Abstract][Full Text] [Related]  

  • 63. RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management.
    Santos D; Remans S; Van den Brande S; Vanden Broeck J
    Plants (Basel); 2021 Mar; 10(3):. PubMed ID: 33806650
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effectors with chitinase activity (EWCAs), a family of conserved, secreted fungal chitinases that suppress chitin-triggered immunity.
    Mart Nez-Cruz JS; Romero D; Hierrezuelo JS; Thon M; de Vicente A; P Rez-Garc A A
    Plant Cell; 2021 May; 33(4):1319-1340. PubMed ID: 33793825
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fungal Extracellular Vesicles in Pathophysiology.
    Garcia-Ceron D; Bleackley MR; Anderson MA
    Subcell Biochem; 2021; 97():151-177. PubMed ID: 33779917
    [TBL] [Abstract][Full Text] [Related]  

  • 66. EV Separation: Release of Intact Extracellular Vesicles Immunocaptured on Magnetic Particles.
    Brambilla D; Sola L; Ferretti AM; Chiodi E; Zarovni N; Fortunato D; Criscuoli M; Dolo V; Giusti I; Murdica V; Kluszczyńska K; Czernek L; Düchler M; Vago R; Chiari M
    Anal Chem; 2021 Apr; 93(13):5476-5483. PubMed ID: 33769802
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cytoplasmic HYL1 modulates miRNA-mediated translational repression.
    Yang X; Dong W; Ren W; Zhao Q; Wu F; He Y
    Plant Cell; 2021 Jul; 33(6):1980-1996. PubMed ID: 33764452
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plant-Derived Extracellular Vesicles and Their Exciting Potential as the Future of Next-Generation Drug Delivery.
    Alzahrani FA; Khan MI; Kameli N; Alsahafi E; Riza YM
    Biomolecules; 2023 May; 13(5):. PubMed ID: 37238708
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effective methods for isolation and purification of extracellular vesicles from plants.
    Huang Y; Wang S; Cai Q; Jin H
    J Integr Plant Biol; 2021 Dec; 63(12):2020-2030. PubMed ID: 34668639
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12.
    Teng Y; Xu F; Zhang X; Mu J; Sayed M; Hu X; Lei C; Sriwastva M; Kumar A; Sundaram K; Zhang L; Park JW; Chen SY; Zhang S; Yan J; Merchant ML; Zhang X; McClain CJ; Wolfe JK; Adcock RS; Chung D; Palmer KE; Zhang HG
    Mol Ther; 2021 Aug; 29(8):2424-2440. PubMed ID: 33984520
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Plant Extracellular Vesicles and Nanovesicles: Focus on Secondary Metabolites, Proteins and Lipids with Perspectives on Their Potential and Sources.
    Woith E; Guerriero G; Hausman JF; Renaut J; Leclercq CC; Weise C; Legay S; Weng A; Melzig MF
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33918442
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Isolation and Characterization of Extracellular Vesicles from
    Yugay Y; Tsydeneshieva Z; Rusapetova T; Grischenko O; Mironova A; Bulgakov D; Silant'ev V; Tchernoded G; Bulgakov V; Shkryl Y
    Plants (Basel); 2023 Oct; 12(20):. PubMed ID: 37896067
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression.
    Pi F; Binzel DW; Lee TJ; Li Z; Sun M; Rychahou P; Li H; Haque F; Wang S; Croce CM; Guo B; Evers BM; Guo P
    Nat Nanotechnol; 2018 Jan; 13(1):82-89. PubMed ID: 29230043
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake.
    Abels ER; Breakefield XO
    Cell Mol Neurobiol; 2016 Apr; 36(3):301-12. PubMed ID: 27053351
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Publisher Correction: RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles.
    He B; Cai Q; Qiao L; Huang CY; Wang S; Miao W; Ha T; Wang Y; Jin H
    Nat Plants; 2021 Apr; 7(4):539. PubMed ID: 33762679
    [No Abstract]   [Full Text] [Related]  

  • 76. Optimized Cholesterol-siRNA Chemistry Improves Productive Loading onto Extracellular Vesicles.
    Haraszti RA; Miller R; Didiot MC; Biscans A; Alterman JF; Hassler MR; Roux L; Echeverria D; Sapp E; DiFiglia M; Aronin N; Khvorova A
    Mol Ther; 2018 Aug; 26(8):1973-1982. PubMed ID: 29937418
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hydrophobicity of Lipid-Conjugated siRNAs Predicts Productive Loading to Small Extracellular Vesicles.
    Biscans A; Haraszti RA; Echeverria D; Miller R; Didiot MC; Nikan M; Roux L; Aronin N; Khvorova A
    Mol Ther; 2018 Jun; 26(6):1520-1528. PubMed ID: 29699940
    [TBL] [Abstract][Full Text] [Related]  

  • 78.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 79.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.