These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 33763151)

  • 1. Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept.
    Amini P; Moghimbeigi A; Zayeri F; Tapak L; Maroufizadeh S; Verbeke G
    Comput Math Methods Med; 2021; 2021():5521881. PubMed ID: 33763151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approximate marginal logistic distribution for the analysis of longitudinal ordinal data.
    Nooraee N; Abegaz F; Ormel J; Wit E; van den Heuvel ER
    Biometrics; 2016 Mar; 72(1):253-61. PubMed ID: 26458164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of covariate effects in generalized linear mixed models with a misspecified distribution of random intercepts and slopes.
    Neuhaus JM; McCulloch CE; Boylan R
    Stat Med; 2013 Jun; 32(14):2419-29. PubMed ID: 23203817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual participant data meta-analysis of continuous outcomes: A comparison of approaches for specifying and estimating one-stage models.
    Legha A; Riley RD; Ensor J; Snell KIE; Morris TP; Burke DL
    Stat Med; 2018 Dec; 37(29):4404-4420. PubMed ID: 30101507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latent-variable models for longitudinal data with bivariate ordinal outcomes.
    Todem D; Kim K; Lesaffre E
    Stat Med; 2007 Feb; 26(5):1034-54. PubMed ID: 16832841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of multivariate longitudinal kidney function outcomes using generalized linear mixed models.
    Jaffa MA; Gebregziabher M; Jaffa AA
    J Transl Med; 2015 Jun; 13():192. PubMed ID: 26072119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian inference for joint modelling of longitudinal continuous, binary and ordinal events.
    Li Q; Pan J; Belcher J
    Stat Methods Med Res; 2016 Dec; 25(6):2521-2540. PubMed ID: 25411326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of mixed correlated overdispersed binomial and ordinal longitudinal responses: LogLindley-Binomial and ordinal random effects model.
    Azimi SS; Bahrami Samani E; Ganjali M
    J Appl Stat; 2022; 49(7):1742-1768. PubMed ID: 35707561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latent variable models for multivariate longitudinal ordinal responses.
    Cagnone S; Moustaki I; Vasdekis V
    Br J Math Stat Psychol; 2009 May; 62(Pt 2):401-15. PubMed ID: 18625083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mixed-effects regression model for longitudinal multivariate ordinal data.
    Liu LC; Hedeker D
    Biometrics; 2006 Mar; 62(1):261-8. PubMed ID: 16542254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial.
    Li N; Elashoff RM; Li G; Saver J
    Stat Med; 2010 Feb; 29(5):546-57. PubMed ID: 19943331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of multiple imputation methods for missing data in longitudinal studies.
    Huque MH; Carlin JB; Simpson JA; Lee KJ
    BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bias-reduced generalized estimating equation approach for proportional odds models with small-sample longitudinal ordinal data.
    Tada Y; Sato T
    BMC Med Res Methodol; 2024 Jun; 24(1):140. PubMed ID: 38943068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A joint overdispersed marginalized random-effects model for analyzing two or more longitudinal ordinal responses.
    Vahabi N; Kazemnejad A; Datta S
    Stat Methods Med Res; 2019 Jan; 28(1):50-69. PubMed ID: 28657455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new approach to analyse longitudinal epidemiological data with an excess of zeros.
    Spriensma AS; Hajos TR; de Boer MR; Heymans MW; Twisk JW
    BMC Med Res Methodol; 2013 Feb; 13():27. PubMed ID: 23425202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of an outcome using trajectories estimated from a linear mixed model.
    Maruyama N; Takahashi F; Takeuchi M
    J Biopharm Stat; 2009 Sep; 19(5):779-90. PubMed ID: 20183443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects.
    Li N; Elashoff RM; Li G; Tseng CH
    Stat Med; 2012 Jul; 31(16):1707-21. PubMed ID: 22344869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-part joint modeling methods for complex functional data mixed with zero-and-one-inflated proportions and zero-inflated continuous outcomes with skewness.
    Li H; Staudenmayer J; Wang T; Keadle SK; Carroll RJ
    Stat Med; 2018 Feb; 37(4):611-626. PubMed ID: 29052239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MIXOR: a computer program for mixed-effects ordinal regression analysis.
    Hedeker D; Gibbons RD
    Comput Methods Programs Biomed; 1996 Mar; 49(2):157-76. PubMed ID: 8735023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mixed effects model for the analysis of ordinal longitudinal pain data subject to informative drop-out.
    Pulkstenis E; Ten Have TR; Landis JR
    Stat Med; 2001 Feb; 20(4):601-22. PubMed ID: 11223903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.