These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 33763448)

  • 1. Microfluidics in Sickle Cell Disease Research: State of the Art and a Perspective Beyond the Flow Problem.
    Aich A; Lamarre Y; Sacomani DP; Kashima S; Covas DT; de la Torre LG
    Front Mol Biosci; 2020; 7():558982. PubMed ID: 33763448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic deformability of sickle red blood cells in microphysiological flow.
    Alapan Y; Matsuyama Y; Little JA; Gurkan UA
    Technology (Singap World Sci); 2016 Jun; 4(2):71-79. PubMed ID: 27437432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sickle cell disease as a vascular disorder.
    Ofori-Acquah SF
    Expert Rev Hematol; 2020 Jun; 13(6):645-653. PubMed ID: 32362160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical Analysis for the Flow of Sickle Red Blood Cells in Microvessels for Bio Medical Application.
    Chaturvedi P; Shah SR
    Yale J Biol Med; 2023 Mar; 96(1):13-21. PubMed ID: 37009195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease.
    Nader E; Romana M; Connes P
    Front Immunol; 2020; 11():454. PubMed ID: 32231672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic study of retention and elimination of abnormal red blood cells by human spleen with implications for sickle cell disease.
    Qiang Y; Sissoko A; Liu ZL; Dong T; Zheng F; Kong F; Higgins JM; Karniadakis GE; Buffet PA; Suresh S; Dao M
    Proc Natl Acad Sci U S A; 2023 Feb; 120(6):e2217607120. PubMed ID: 36730189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Less-deformable erythrocyte subpopulations biomechanically induce endothelial inflammation in sickle cell disease.
    Caruso C; Cheng X; Michaud ME; Szafraniec HM; Thomas BE; Fay ME; Mannino RG; Zhang X; Sakurai Y; Li W; Myers DR; Joiner CH; Wood DK; Bhasin M; Graham MD; Lam WA
    Blood; 2024 Nov; 144(19):2050-2062. PubMed ID: 39178344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying Shear-Induced Deformation and Detachment of Individual Adherent Sickle Red Blood Cells.
    Deng Y; Papageorgiou DP; Chang HY; Abidi SZ; Li X; Dao M; Karniadakis GE
    Biophys J; 2019 Jan; 116(2):360-371. PubMed ID: 30612714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patrolling monocytes scavenge endothelial-adherent sickle RBCs: a novel mechanism of inhibition of vaso-occlusion in SCD.
    Liu Y; Zhong H; Bao W; Mendelson A; An X; Shi P; Chou ST; Manwani D; Yazdanbakhsh K
    Blood; 2019 Aug; 134(7):579-590. PubMed ID: 31076443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological studies of erythrocyte-endothelial cell interactions in sickle cell disease.
    Barabino GA; McIntire LV; Eskin SG; Sears DA; Udden M
    Prog Clin Biol Res; 1987; 240():113-27. PubMed ID: 3615482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise.
    Nader E; Skinner S; Romana M; Fort R; Lemonne N; Guillot N; Gauthier A; Antoine-Jonville S; Renoux C; Hardy-Dessources MD; Stauffer E; Joly P; Bertrand Y; Connes P
    Front Physiol; 2019; 10():1329. PubMed ID: 31749708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Sickling During Controlled Automated Deoxygenation with Oxygen Gradient Ektacytometry.
    Rab MAE; van Oirschot BA; Bos J; Kanne CK; Sheehan VA; van Beers EJ; van Wijk R
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red blood cell adhesion to ICAM-1 is mediated by fibrinogen and is associated with right-to-left shunts in sickle cell disease.
    Kucukal E; Man Y; Quinn E; Tewari N; An R; Ilich A; Key NS; Little JA; Gurkan UA
    Blood Adv; 2020 Aug; 4(15):3688-3698. PubMed ID: 32777069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative intravital two-photon excitation microscopy reveals absence of pulmonary vaso-occlusion in unchallenged Sickle Cell Disease mice.
    Bennewitz MF; Watkins SC; Sundd P
    Intravital; 2014 Jul; 3(2):e29748. PubMed ID: 25995970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic assessment of red blood cell mediated microvascular occlusion.
    Man Y; Kucukal E; An R; Watson QD; Bosch J; Zimmerman PA; Little JA; Gurkan UA
    Lab Chip; 2020 Jun; 20(12):2086-2099. PubMed ID: 32427268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vasculopathy in Sickle Cell Disease: From Red Blood Cell Sickling to Vascular Dysfunction.
    Nader E; Conran N; Romana M; Connes P
    Compr Physiol; 2021 Apr; 11(2):1785-1803. PubMed ID: 33792905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear dependent red blood cell adhesion in microscale flow.
    Kucukal E; Little JA; Gurkan UA
    Integr Biol (Camb); 2018 Apr; 10(4):194-206. PubMed ID: 29557482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal saline is associated with increased sickle red cell stiffness and prolonged transit times in a microfluidic model of the capillary system.
    Carden MA; Fay M; Sakurai Y; McFarland B; Blanche S; DiPrete C; Joiner CH; Sulchek T; Lam WA
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28106307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular pathophysiology of sickle cell disease.
    Connes P; Renoux C; Joly P; Nader E
    Presse Med; 2023 Dec; 52(4):104202. PubMed ID: 37944640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions.
    Dufu K; Patel M; Oksenberg D; Cabrales P
    Clin Hemorheol Microcirc; 2018; 70(1):95-105. PubMed ID: 29660913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.