BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 33763651)

  • 1. Pan-cancer image-based detection of clinically actionable genetic alterations.
    Kather JN; Heij LR; Grabsch HI; Loeffler C; Echle A; Muti HS; Krause J; Niehues JM; Sommer KAJ; Bankhead P; Kooreman LFS; Schulte JJ; Cipriani NA; Buelow RD; Boor P; Ortiz-Brüchle NN; Hanby AM; Speirs V; Kochanny S; Patnaik A; Srisuwananukorn A; Brenner H; Hoffmeister M; van den Brandt PA; Jäger D; Trautwein C; Pearson AT; Luedde T
    Nat Cancer; 2020 Aug; 1(8):789-799. PubMed ID: 33763651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based prediction of molecular cancer biomarkers from tissue slides: A new tool for precision oncology.
    Lee SH; Jang HJ
    Clin Mol Hepatol; 2022 Oct; 28(4):754-772. PubMed ID: 35443570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning.
    Jang HJ; Lee A; Kang J; Song IH; Lee SH
    World J Gastroenterol; 2020 Oct; 26(40):6207-6223. PubMed ID: 33177794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated annotations of epithelial cells and stroma in hematoxylin-eosin-stained whole-slide images using cytokeratin re-staining.
    Brázdil T; Gallo M; Nenutil R; Kubanda A; Toufar M; Holub P
    J Pathol Clin Res; 2022 Mar; 8(2):129-142. PubMed ID: 34716754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piloting a Deep Learning Model for Predicting Nuclear BAP1 Immunohistochemical Expression of Uveal Melanoma from Hematoxylin-and-Eosin Sections.
    Zhang H; Kalirai H; Acha-Sagredo A; Yang X; Zheng Y; Coupland SE
    Transl Vis Sci Technol; 2020 Sep; 9(2):50. PubMed ID: 32953248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.
    Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P
    JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological diversity of cancer cells predicts prognosis across tumor types.
    Sali R; Jiang Y; Attaranzadeh A; Holmes B; Li R
    J Natl Cancer Inst; 2024 Apr; 116(4):555-564. PubMed ID: 37982756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Teacher-student collaborated multiple instance learning for pan-cancer PDL1 expression prediction from histopathology slides.
    Jin D; Liang S; Shmatko A; Arnold A; Horst D; Grünewald TGP; Gerstung M; Bai X
    Nat Commun; 2024 Apr; 15(1):3063. PubMed ID: 38594278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study.
    Skrede OJ; De Raedt S; Kleppe A; Hveem TS; Liestøl K; Maddison J; Askautrud HA; Pradhan M; Nesheim JA; Albregtsen F; Farstad IN; Domingo E; Church DN; Nesbakken A; Shepherd NA; Tomlinson I; Kerr R; Novelli M; Kerr DJ; Danielsen HE
    Lancet; 2020 Feb; 395(10221):350-360. PubMed ID: 32007170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based tumor microenvironment segmentation is predictive of tumor mutations and patient survival in non-small-cell lung cancer.
    Rączkowska A; Paśnik I; Kukiełka M; Nicoś M; Budzinska MA; Kucharczyk T; Szumiło J; Krawczyk P; Crosetto N; Szczurek E
    BMC Cancer; 2022 Sep; 22(1):1001. PubMed ID: 36131239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning and Colon Cancer Interpretation: Rise of the Machine.
    McHugh K; Pai RK
    Surg Pathol Clin; 2023 Dec; 16(4):651-658. PubMed ID: 37863557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers.
    Jin L; Shi F; Chun Q; Chen H; Ma Y; Wu S; Hameed NUF; Mei C; Lu J; Zhang J; Aibaidula A; Shen D; Wu J
    Neuro Oncol; 2021 Jan; 23(1):44-52. PubMed ID: 32663285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning based on hematoxylin-eosin staining outperforms immunohistochemistry in predicting molecular subtypes of gastric adenocarcinoma.
    Flinner N; Gretser S; Quaas A; Bankov K; Stoll A; Heckmann LE; Mayer RS; Doering C; Demes MC; Buettner R; Rueschoff J; Wild PJ
    J Pathol; 2022 Jun; 257(2):218-226. PubMed ID: 35119111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.
    Fu Y; Jung AW; Torne RV; Gonzalez S; Vöhringer H; Shmatko A; Yates LR; Jimenez-Linan M; Moore L; Gerstung M
    Nat Cancer; 2020 Aug; 1(8):800-810. PubMed ID: 35122049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepDOF-SE: affordable deep-learning microscopy platform for slide-free histology.
    Jin L; Tang Y; Coole JB; Tan MT; Zhao X; Badaoui H; Robinson JT; Williams MD; Vigneswaran N; Gillenwater AM; Richards-Kortum RR; Veeraraghavan A
    Nat Commun; 2024 Apr; 15(1):2935. PubMed ID: 38580633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning-Based Stratification of Gastric Cancer Patients from Hematoxylin and Eosin-Stained Whole Slide Images by Predicting Molecular Features for Immunotherapy Response.
    Wei Z; Zhao X; Chen J; Sun Q; Wang Z; Wang Y; Ye Z; Yuan Y; Sun L; Jing J
    Am J Pathol; 2023 Oct; 193(10):1517-1527. PubMed ID: 37356573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biased data, biased AI: deep networks predict the acquisition site of TCGA images.
    Dehkharghanian T; Bidgoli AA; Riasatian A; Mazaheri P; Campbell CJV; Pantanowitz L; Tizhoosh HR; Rahnamayan S
    Diagn Pathol; 2023 May; 18(1):67. PubMed ID: 37198691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A U-Net based framework to quantify glomerulosclerosis in digitized PAS and H&E stained human tissues.
    Gallego J; Swiderska-Chadaj Z; Markiewicz T; Yamashita M; Gabaldon MA; Gertych A
    Comput Med Imaging Graph; 2021 Apr; 89():101865. PubMed ID: 33548823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic pan-cancer study on deep learning-based prediction of multi-omic biomarkers from routine pathology images.
    Arslan S; Schmidt J; Bass C; Mehrotra D; Geraldes A; Singhal S; Hense J; Li X; Raharja-Liu P; Maiques O; Kather JN; Pandya P
    Commun Med (Lond); 2024 Mar; 4(1):48. PubMed ID: 38491101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MuDeRN: Multi-category classification of breast histopathological image using deep residual networks.
    Gandomkar Z; Brennan PC; Mello-Thoms C
    Artif Intell Med; 2018 Jun; 88():14-24. PubMed ID: 29705552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.